用户名: 密码: 验证码:
Determination of microcystin-LR with a glassy carbon impedimetric immunoelectrode modified with an ionic liquid and multiwalled carbon nanotubes
详细信息    查看全文
  • 作者:Xiulan Sun (1)
    Lu Guan (1)
    Hui Shi (1)
    Jian Ji (1)
    Yinzhi Zhang (1)
    Zaijun Li (2)
  • 关键词:Microcystin ; LR ; Impedance immunosensor ; Ionic liquid ; Multiwalled carbon nanotubes
  • 刊名:Microchimica Acta
  • 出版年:2013
  • 出版时间:2 - January 2013
  • 年:2013
  • 卷:180
  • 期:1
  • 页码:75-83
  • 全文大小:402KB
  • 参考文献:1. Dawson RM (1998) The toxicology of microcystins. Toxicon 36:953-62 CrossRef
    2. ?egura B, Sedmak B, Filipi? M (2003) Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41:41-8 CrossRef
    3. Gupta N, Pant SC, Vijayaraghavan R, Rao PVL (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285-96 CrossRef
    4. McElhiney J, Lawton LA (2005) Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharm 203:219-30 CrossRef
    5. Pumera M, Merko?i A, Alegret S (2006) Carbon nanotube-epoxy composites for electrochemical sensing. Sensors Actuators B: Chem 113:617-22 CrossRef
    6. Xu ZA, Chen X, Qu XH, Dong SJ (2004) Electrocatalytic oxidation of catechol at multi-walled carbon nanotubes modified electrode. Electroanal 16:684-87 CrossRef
    7. WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva
    8. Mountfort DO, Holland P, Sprosen J (2005) Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS. Toxicon 45:199-06 CrossRef
    9. Herranz S, Bocková M, Marazuela MD, Homola J, Moreno-Bondi MC (2010) An SPR biosensor for the detection of microcystins in drinking water. Anal Bioanal Chem 398:2625-634 CrossRef
    10. Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78-6 CrossRef
    11. Chu FS, Huang X, Wei RD (1990) Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J Assoc Off Anal Chem 73:451-57
    12. Khreich N, Lamourette P, Renard PY, Clavé G, Fenaille F, Créminon C, Volland H (2009) A highly sensitive competitive enzyme immunoassay of broad specificity quantifying microcystins and nodularins in water samples. Toxicon 53:551-59 CrossRef
    13. Liu Y, Zhang D, Alocilja EC, Chakrabartty S (2010) Biomolecules detection using a silver-enhanced gold nanoparticle-based biochip. Nanoscale Res Lett 5:533-38 CrossRef
    14. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689-94 CrossRef
    15. Chen PH, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958-965 CrossRef
    16. Sassolas A, Catanante G, Fournier D, Marty JL (2011) Development of a colorimetric inhibition assay for microcystin-LR detection: comparison of the sensitivity of different protein phosphatases. Talanta 85:2498-503 CrossRef
    17. Han JH, Zhang JP, Xia YT, Jiang L (2011) Highly sensitive detection of the hepatotoxin microcystin-LR by surface modification and bio-nanotechnology. Colloid Surf A-Physicochem Eng Asp 391:184-89 CrossRef
    18. Barzen C, Brecht A, Gauglitz G (2002) Optical multiple-analyte immunosensor for water pollution control. Biosens Bioelectron 17:289-95 CrossRef
    19. Long F, He M, Zhu AN, Shi HC (2009) Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens Bioelectron 24:2346-351 CrossRef
    20. Talaty ER, Raja S, Storhaug VJ, D?lle A, Carper WR (2004) Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177-3184 CrossRef
    21. Zhang J, Lei JP, Xu CL, Ding L, Ju HX (2010) Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal Chem 82:1117-122 CrossRef
    22. Cleuziou JP, Wernsdorfer W, Ondar?uhu T, Monthioux M (2011) Electrical detection of individual magnetic nanoparticles encapsulated in carbon nanotubes. ACS Nano 5:2348-355 CrossRef
    23. Shi F, Deng YQ (2005) Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel. Spectrochim Acta A 62:239-44 CrossRef
    24. Shervedani RK, Bagherzadeh M (2009) Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer. Sensor Actuat B- Chem 139:657-64 CrossRef
    25. Briza PL, Arben M (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1-6 CrossRef
    26. Du P, Liu SN, Wu P, Cai CX (2007) Single-walled carbon nanotubes functionalized with poly(Nile blue a) and their application to dehydrogenase-based biosensors. Electrochim Acta 53:1811-823 CrossRef
    27. Saini RK, Chiang IW, Peng HP, Smalley RE, Billups WE, Hauge RH, Margrave JL (2003) Covalent sidewall functionalization of single wall carbon nanotubes. J Am Chem Soc 125:3617-621 CrossRef
    28. Ding SF, Xu MQ, Zhao GC, Wei XW (2007) Direct electrochemical response of myoglobin using a room temperature ionic liquid, 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte. Electrochem Commun 9:216-20 CrossRef
    29. Wei D, Kvarnstr?m C, Lindfors T, Ivaska A (2007) Electrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids. Electrochem Commun 9:206-10 CrossRef
    30. Laszlo JA, Compton DL (2002) Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. J Mol Catal B-Enzym 18:109-20 CrossRef
    31. Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, Bontempelli G (2012) An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12:153-58 CrossRef
    32. Li ZJ, Wang ZY, Sun XL, Fang YJ, Chen PP (2010) A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel–ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen. Talanta 80:1632-637 CrossRef
    33. Tao WY, Pan DW, Liu Q, Yao SZ, Nie Z, Han BX (2006) Optical and bioelectrochemical characterization of water-miscible ionic liquids based composites of multiwalled carbon nanotubes. Electroanal 18:1681-688 CrossRef
    34. Woody RW (2009) Circular dichroism spectrum of peptides in the poly(pro)II conformation. J Am Chem Soc 131:8234-245 CrossRef
    35. Xia Y, Zhang J, Jiang L (2011) A novel dendritic surfactant for enhanced microcystin-LR detection by double amplification in a quartz crystal microbalance biosensor. Colloids and Surfaces B: Biointerfaces 86:81-6 CrossRef
    36. Wei Q, Zhao Y, Du B, Wu D, Cai Y, Mao K, Li H, Xu C (2011) Nanoporous PtRu alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR. Adv Funct Mater 21:4193-198 CrossRef
    37. Queirós RB, Silva SO, Noronha JP, Fraz?o O, Jorge P, Aguilar G, Marques PVS, Sales MGF (2011) Microcystin-LR detection in water by the fabry–pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane. Biosens Bioelectron 26:3932-937 CrossRef
    38. Tian J, Zhao H, Zhao H, Quan X (2012) Photoelectrochemical immunoassay for microcystin-LR based on a fluorine-doped tin oxide glass electrode modified with a CdS-graphene composite. Microchim Acta 179:163-70 CrossRef
  • 作者单位:Xiulan Sun (1)
    Lu Guan (1)
    Hui Shi (1)
    Jian Ji (1)
    Yinzhi Zhang (1)
    Zaijun Li (2)

    1. The Key Laboratory of Food Science and technology, School of Food Science, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu province, 214122, China
    2. School of Chemical and Materials Engineering, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu province, 214122, China
  • ISSN:1436-5073
文摘
We report on a sensitive, simple, label-free impedance-based immunoelectrode for the determination of microcystin-LR (MCLR). The surface of the electrode was modified with a composite made from multiwalled carbon nanotubes and an ionic liquid, and with immobilized polyclonal antibody against MCLR. Cyclic voltammetry and impedance spectroscopy were applied to characterize the modified electrode. It is found that the multi-walled carbon nanotubes act as excellent mediators for the electron transfer between the electrode and dissolved hexacyanoferrate redox pair, while the ionic liquid renders it biocompatible. The method exhibits a wide linear range (0.005?μg?L-1 to 1.0?μg?L-1), a low detection limit (1.7?ng?L-1) and a long-term stability of around 60?days. The ionic liquid 1-amyl-2,3-dimethylimidazolium hexafluorophosphate gave the best impedimetric response. The new immunoelectrode is sensitive, stable, and easily prepared. It has been successfully applied to the determination of MCLR in water samples. Figure The immunosensor, modified with a nanocomposite of room temperature ionic liquid- multiwalled carbon nanotube, was applied to detect MCLR. The method exhibits a wide linear range (0.005?μg·L? to 1.0?μg·L?), a low detection limit (1.7 ng·L-1) and a long-term stability of around 60 days.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700