用户名: 密码: 验证码:
Actinide-embedded gold superatom models: Electronic structure, spectroscopic properties, and applications in surface-enhanced Raman scattering
详细信息    查看全文
  • 作者:Yang Gao ; Bo Wang ; Yanyu Lei ; Boon K. Teo ; Zhigang Wang
  • 关键词:actinide element ; DFT calculation ; gold nanoparticle ; superatomic orbital ; surface ; enhanced Raman scattering
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:622-632
  • 全文大小:1,962 KB
  • 参考文献:[1]Pyykkö, P. Theoretical chemistry of gold. III. Chem. Soc. Rev. 2008, 37, 1967–1997.CrossRef
    [2]Li, X.; Kiran, B.; Li, J.; Zhai, H. J.; Wang, L. S. Experimental observation and confirmation of icosahedral W@Au12 and Mo@Au12 molecules. Angew. Chem., Int. Ed. 2002, 41, 4786–4789.CrossRef
    [3]Pyykkö, P.; Runeberg, N. Icosahedral WAu12: A predicted closed-shell species, stabilized by aurophilic attraction and relativity and in accord with the 18-electron rule. Angew. Chem., Int. Ed. 2002, 114, 2278–2280.CrossRef
    [4]Gao, Y.; Chen, L.; Dai, X.; Song, R. X.; Wang, B.; Wang, Z. Q. A strong charge-transfer effect in surface-enhanced Raman scattering induced by valence electrons of actinide elements. RSC Adv. 2015, 5, 32198–32204.CrossRef
    [5]Neukermans, S.; Janssens, E.; Tanaka, H.; Silverans, R. E.; Lievens, P. Element- and size-dependent electron delocalization in AuNX+ clusters (X = Sc, Ti, V, Cr, Mn, Fe, Co, Ni). Phys. Rev. Lett. 2003, 90, 033401.
    [6]Gao, Y.; Bulusu, S.; Zeng, X. C. Gold-caged metal clusters with large HOMO–LUMO gap and high electron affinity. J. Am. Chem. Soc. 2005, 127, 15680–15681.CrossRef
    [7]Zhai, H. J.; Li, J.; Wang, L. S. Icosahedral gold cage clusters: M@Au 12 - (M = V, Nb, and Ta). J. Chem. Phys. 2004, 121, 8369–8374.CrossRef
    [8]Teo, B. K.; Zhang, H. Polyicosahedricity: Icosahedron to icosahedron of icosahedra growth pathway for bimetallic (Au–Ag) and trimetallic (Au–Ag–M; M = Pt, Pd, Ni) supraclusters; synthetic strategies, site preference, and stereochemical principles. Coord. Chem. Rev. 1995, 143, 611–636.CrossRef
    [9]Zhao, L. L.; Jensen, L.; Schalz, G. C. Pyridine-Ag20 cluster: A model system for studying surface-enhanced raman scattering. J. Am. Chem. Soc. 2006, 128, 2911–2919.CrossRef
    [10]Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys. Rev. Lett. 1992, 69, 1664–1667.CrossRef
    [11]Jena, P. Beyond the periodic table of elements: The role of superatoms. J. Phys. Chem. Lett. 2013, 4, 1432–1442.CrossRef
    [12]Reveles, J. U.; Clayborne, P. A.; Reber, A. C.; Khanna, S. N.; Pradhan, K.; Sen, P.; Pederson, M. R. Designer magnetic superatoms. Nat. Chem. 2009, 1, 310–315.CrossRef
    [13]Claridge, S. A.; Castleman, A. W. Jr.; Khanna, S. N.; Murray, C. B.; Sen, A.; Weiss, P. S. Cluster-assembled materials. ACS Nano 2009, 3, 244–255.CrossRef
    [14]Castleman, A. W. Jr; Khanna, S. N.; Sen, A.; Reber, A. C.; Qian, M. C.; Davis, K. M.; Peppernick, S. J.; Ugrinov, A.; Merritt, M. D. From designer clusters to synthetic crystalline nanoassemblies. Nano Lett. 2007, 7, 2734–2741.CrossRef
    [15]Day, P. N.; Nguyen, K. A.; Pachter, R. Calculation of one- and two-photon absorption spectra of thiolated gold nanoclusters using time-dependent density functional theory. J. Chem. Theory Comput. 2010, 6, 2809–2821.CrossRef
    [16]Ramakrishna, G.; Varnavski, O.; Kim, J.; Lee, D.; Goodson, T. Quantum-sized gold clusters as efficient two-photon absorbers. J. Am. Chem. Soc. 2008, 130, 5032–5033.CrossRef
    [17]Zhu, M. Z.; Aikens, C. M.; Hendrich, M. P.; Gupta, R.; Qian, H. F.; Schatz, G. C.; Jin, R. C. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J. Am. Chem. Soc. 2009, 131, 2490–2492.CrossRef
    [18]Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.CrossRef
    [19]Gao, Y.; Bulusu, S.; Zeng, X. C. A global search of highly stable gold-covered bimetallic clusters M@Aun (n = 8–17): Endohedral gold clusters. Chem. Phys. Chem. 2006, 7, 2275–2278.
    [20]Li, J.; Li, X.; Zhai, H. J.; Wang, L. S. Au20: A tetrahedral cluster. Science 2003, 299, 864–867.CrossRef
    [21]Katz, J. J.; Seaborg, G. T.; Morss, L. R. The Chemistry of the Actinide Elements, 2nd ed.; Chapman and Hall: New York, 1986.CrossRef
    [22]Gao, Y.; Dai, X.; Kang, S. G.; Jimenez-Cruz, C. A.; Xin, M.; Meng, Y.; Han, J.; Wang, Z. G.; Zhou, R. H. Structural and electronic properties of uranium-encapsulated Au14 cage. Sci. Rep. 2014, 4, 5862.
    [23]Yadav, B. D.; Kumar, V. Gd@Au15: A magic magnetic gold cluster for cancer therapy and bioimaging. Appl. Phys. Lett. 2010, 97, 133701.
    [24]Cao, G. J.; Schwarz, W. H. E.; Li, J. An 18-electron system containing a superheavy element: Theoretical studies of Sg@Au12. Inorg. Chem. 2015, 54, 3695–3701.CrossRef
    [25]Li, J.; Hu, H. S.; Lyon, J. T.; Andrews, L. Chirality, agostic interactions, and pyramidality in actinide methylidene complexes. Angew. Chem., Int. Ed. 2007, 46, 9045–9049.CrossRef
    [26]Lyon, J. T.; Hu, H. S.; Andrews, L.; Li, J. Formation of unprecedented actinide=carbon triple bonds in uranium methylidyne molecules. Proc. Natl. Acad. Sci. USA. 2007, 104, 18919–18924.CrossRef
    [27]Andrews, L.; Liang, B. Y.; Li, J.; Bursten, B. E. Noble gas-actinide complexes of the CUO molecule with multiple Ar, Kr, and Xe atoms in noble-gas matrices. J. Am. Chem. Soc. 2003, 125, 3126–3139.CrossRef
    [28]Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824.CrossRef
    [29]Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.CrossRef
    [30]van Lenthe, E.; Ehlers, A.; Baerends, E. J. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 1999, 110, 8943–8953.CrossRef
    [31]van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610.CrossRef
    [32]van Lenthe, E.; Snijders, J. G.; Baerends, E. J. The zero-order regular approximation for relativistic effects: The effect of spin–orbit coupling in closed shell molecules. J. Chem. Phys. 1996, 105, 6505–6516.CrossRef
    [33]van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic total energy using regular approximations. J. Chem. Phys. 1994, 101, 9783–9792.CrossRef
    [34]Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.CrossRef
    [35]Perdew, J. P.; Ernzerhof, M.; Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 1996, 105, 9982–9985.CrossRef
    [36]Dognon, J. P.; Clavaguéra, C.; Pyykkö, P. A predicted organometallic series following a 32-electron principle: An@C28 (An = Th, Pa+, U2+, Pu4+). J. Am. Chem. Soc. 2009, 131, 238–243.CrossRef
    [37]van Lenthe, E.; Baerends, E. J. Optimized slater-type basis sets for the elements 1–118. J. Comput. Chem. 2003, 24, 1142–1156.CrossRef
    [38]Gritsenko, O. V.; Schipper, P. R. T.; Baerends, E. J. Approximation of the exchange-correlation Kohn–Sham potential with a statistical average of different orbital model potentials. Chem. Phys. Lett. 1999, 302, 199–207.CrossRef
    [39]Schipper, P. R. T.; Gritsenko, O. V.; Van Gisbergen, S. J. A.; Baerends, E. J. Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials. J. Chem. Phys. 2000, 112, 1344–1352.CrossRef
    [40]Geethalakshmi, K. R.; Ruiperez, F.; Knecht, S.; Ugalde, J. M.; Morse, M. D.; Infante, I. An interpretation of the absorption and emission spectra of the gold dimer using modern theoretical tools. Phys. Chem. Chem. Phys. 2012, 14, 8732–8741.CrossRef
    [41]Rabilloud, F. Description of plasmon-like band in silver clusters: The importance of the long-range Hartree-Fock exchange in time-dependent density-functional theory simulations. J. Chem. Phys. 2014, 141, 144302.
    [42]Anak, B.; Bencharif, M.; Rabilloud, F. Time-dependent density functional study of UV–visible absorption spectra of small noble metal clusters (Cun, Agn, Aun, n = 2–9, 20). RSC Adv. 2014, 4, 13001.
    [43]Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, S. J. A.; Snijders, J. G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967.CrossRef
    [44]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision D. 01; Gaussian, Inc.: Wallingford CT, USA, 2009.
    [45]Cao, X. Y.; Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struc. 2004, 673, 203–209.CrossRef
    [46]Neugebauer, J.; Reiher, M.; Kind, C.; Hess, B. A. Quantum chemical calculation of vibrational spectra of large molecules—Raman and IR spectra for Buckminsterfullerene. J. Comput. Chem. 2002, 23, 895–910.CrossRef
    [47]Pyykkö, P.; Snijders, J. G.; Baerends, E. J. On the effect of d orbitals on relativistic bond-length contractions. Chem. Phys. Lett. 1981, 83, 432–437.CrossRef
    [48]Straka, M.; Patzschke, M.; Pyykkö, P. Why are hexavalent uranium cyanides rare while U–F and U–O bonds are common and short? Theor. Chem. Acc. 2003, 109, 332–340.CrossRef
    [49]Wang, X. F.; Andrews, L.; Gagliardi, L. Infrared spectra of ThH2, ThH4, and the hydride bridging ThH4(H2)x (x = 1–4) complexes in solid neon and hydrogen. J. Phys. Chem. A 2008, 112, 1754–1761.CrossRef
    [50]Pyykkö, P.; Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem.—Eur. J. 2009, 15, 186–197.CrossRef
    [51]Halcrow, M. A. Jahn–Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials. Chem. Soc. Rev. 2013, 42, 1784–1795.CrossRef
    [52]Sato, T.; Lijnen, E.; Ceulemans, A. Jahn-Teller instability of icosahedral [W@Au12]-. J. Chem. Theory Comput. 2014, 10, 613–622.CrossRef
    [53]Gao, Y.; Zhou, B.; Kang, S.-G.; Xin, M. S.; Yang, P.; Dai, X.; Wang, Z. G.; Zhou, R. H. Effect of ligands on the characteristics of (CdSe)13 quantum dots. RSC Adv. 2014, 4, 27146–27151.CrossRef
    [54]Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiolstabilized Ag44 and Au12Ag32 nanoparticles with singlecrystal structures. Nat. Commun. 2013, 4, 2422.
    [55]Roos, B. O.; Malmqvist, P.-A.; Gagliardi, L. Exploring the actinide-actinide bond: Theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2. J. Am. Chem. Soc. 2006, 128, 17000–17006.CrossRef
    [56]Rauhalahti, M.; Muñoz-Castro, A. Interaction in multilayer clusters: A theoretical survey of [Sn@Cu12@Sn20]12-, a three-layer matryoshka-like intermetalloid. RSC Adv. 2015, 5, 18782–18787.CrossRef
    [57]Fonseca Guerra, C.; Handgraaf, J. W.; Baerends, E. J.; Bickelhaupt, F. M. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 2004, 25, 189–210.CrossRef
    [58]Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44, 129–138.CrossRef
    [59]Mulliken, R. S. Chemical bonding. Annu. Rev. Phys. Chem. 1978, 29, 1–31.CrossRef
    [60]Barrett, P. H.; Grant, R. W.; Kaplan, M.; Keller, D. A.; Shirley, D. A. Electron transfer in dilute gold alloys. J. Chem. Phys. 1963, 39, 1035–1040.CrossRef
    [61]Watson, R. E.; Hudis, J.; Perlman, M. L. Charge flow and d compensation in gold alloys. Phys. Rev. B 1971, 4, 4139–4144.CrossRef
    [62]Tyson, C. C.; Bzowski, A.; Kristof, P.; Kuhn, M.; Sammynaiken, R.; Sham, T. K. Charge redistribution in Au–Ag alloys from a local perspective. Phys. Rev. B 1992, 45, 8924–8928.CrossRef
    [63]Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold (I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.CrossRef
    [64]Aikens, C. M. Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104.CrossRef
    [65]Lopez-Acevedo, O.; Tsunoyama, H.; Tsukuda, T.; Aikens, C. M. Chirality and electronic structure of the thiolateprotected Au38 nanocluster. J. Am. Chem. Soc. 2010, 132, 8210–8218.CrossRef
    [66]KuHn, M.; Weigend, F. Implementation of two-component time-dependent density functional theory in TURBOMOLE. J. Chem. Theory Comput. 2013, 9, 5341–5348.CrossRef
    [67]Jiang, D. E.; Kuhn, M.; Tang, Q.; Weigend, F. Superatomic orbitals under spin–orbit coupling. J. Phys. Chem. Lett. 2014, 5, 3286–3289.CrossRef
    [68]Aikens, C. M.; Schatz, G. C. TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. J. Phys. Chem. A 2006, 110, 13317–13324.CrossRef
    [69]Da Re, R. E.; Jantunen, K. C.; Golden, J. T.; Kiplinger, J. L.; Morris, D. E. Molecular spectroscopy of uranium(IV) Bis(ketimido) complexes. rare observation of resonanceenhanced raman scattering from organoactinide complexes and evidence for broken-symmetry excited states. J. Am. Chem. Soc. 2005, 127, 682–689.CrossRef
  • 作者单位:Yang Gao (1) (2)
    Bo Wang (1) (2)
    Yanyu Lei (1) (2)
    Boon K. Teo (3) (4)
    Zhigang Wang (1) (2) (5)

    1. Institute of Atomic and Molecular Physics, Jilin University, Changchun, 130012, China
    2. Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun, 130012, China
    3. College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
    4. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
    5. Beijing Computational Science Research Center, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Actinide elements encaged in a superatomic cluster can exhibit unique properties due to their hyperactive valence electrons. Herein, the electronic and spectroscopic properties of Th@Au14 are predicted and compared with that of the isoelectronic entities [Ac@Au14]− and [Pa@Au14]+ using density functional theory. The calculation results indicate that these clusters all adopt a closedshell superatomic 18-electron configuration of the 1S21P61D10 Jellium state. The absorption spectrum of Th@Au14 can be interpreted by the Jelliumatic orbital model. In addition, calculated spectra of pyridine-Th@Au14 complexes in the blue laser band exhibit strong peaks attributable to charge transfer (CT) from the metal to the pyridine molecule. These charge-transfer bands lead to a resonant surface-enhanced Raman scattering (SERS) enhancement of ∼104. This work suggests a basis for designing and synthesizing SERS substrate materials based on actinide-embedded gold superatom models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700