用户名: 密码: 验证码:
Crystallographic orientation-dependent pattern replication in direct imprint of aluminum nanostructures
详细信息    查看全文
  • 作者:Ying Yuan (1)
    Junjie Zhang (1)
    Tao Sun (1)
    Cong Liu (2)
    Yanquan Geng (1)
    Yongda Yan (1)
    Peng Jin (2)

    1. Center for Precision Engineering
    ; Harbin Institute of Technology ; Harbin ; 150001 ; People鈥檚 Republic of China
    2. Center of Ultra-precision Optoelectronic Engineering
    ; Harbin Institute of Technology ; Harbin ; 150001 ; People鈥檚 Republic of China
  • 关键词:Direct imprint ; Single ; crystalline aluminum ; Crystallographic orientation ; Nanoindentation ; Molecular dynamics
  • 刊名:Nanoscale Research Letters
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:1
  • 全文大小:1,908 KB
  • 参考文献:1. Chou, SY, Keimel, C, Gu, J (2002) Ultrafast and direct imprint of nanostructures in silicon. Nature 417: pp. 835-7 CrossRef
    2. Lister, KA, Thoms, S, Macintyre, DS, Wikinson, CDW, Weaver, JMR, Casey, BG (2004) Direct imprint of sub-10 nm features into metal using diamond and SiC stamps. J Vac Sci Technol B 22: pp. 3257 CrossRef
    3. Li, M, Chen, L, Chou, SY (2001) Direct three-dimensional patterning using nanoimprint lithography. Appl Phys Lett 78: pp. 3322-4 CrossRef
    4. Costner, EA, Lin, MW, Jen, WL, Willson, CG (2009) Nanoimprint lithography materials development for semiconductor device fabrication. Annu Rev Mater Res 39: pp. 155-80 CrossRef
    5. Cheng, MC, Hsiung, HY, Lu, YT, Sung, CK (2007) The effect of metal-film thickness on pattern formation by using direct imprint. Jpn J Appl Phys 46: pp. 6382 CrossRef
    6. Hua, F, Sun, YG, Gaur, A, Meitl, MA, Bihaut, L, Rotking, L (2004) Polymer imprint lithography with molecular-scale resolution. Nano Lett 4: pp. 2467-71 CrossRef
    7. Chou, SY, Krauss, PR, Renstrom, PJ (1995) Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett 67: pp. 3114-6 CrossRef
    8. Chou, SY, Keimel, C, Gu, J (2002) Ultrafast and direct imprint of nanostructures in silicon. Science 417: pp. 835-7
    9. Dietiker, M, Buzzi, S, Pigozzi, G, L枚ffler, JF, Spolenak, R (2011) Deformation behavior of gold nano-pillars prepared by nanoimprinting and focused ion-beam milling. Acta Mater 59: pp. 2180-92 CrossRef
    10. Jawahir, IS, Brinksmeier, E, M鈥橲aoubi, R, Aspinwall, DK, Outeiro, JC, Meyer, D (2011) Surface integrity in material removal processes: recent advances. CIRP Ann-Manuf Technol 60: pp. 603-26 CrossRef
    11. Salehinia, I, Bahr, DF (2014) Crystal orientation effect on dislocation nucleation and multiplication in FCC single crystal under uniaxial loading. Int J Plast 52: pp. 133-46 CrossRef
    12. Tschopp, MA, McDowell, DL (2007) Tension-compression asymmetry in homogeneous dislocation nucleation in single crystal copper. Appl Phys Lett 90: pp. 121916 CrossRef
    13. Wu, B, Heidelberg, A, Boland, JJ, Sader, JE (2006) Microstructure-hardened silver nanowires. Nano Lett 6: pp. 468-72 CrossRef
    14. Ju, SP, Wan, CT, Chien, CH, Huang, J (2007) The nanoindentation responses of nickel surfaces with different crystal orientations. Mol Simul 33: pp. 905-17 CrossRef
    15. Zhang, JJ, Hartmaier, A, Wei, YJ, Yan, YD, Sun, T (2013) Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Model Simul Mater Sci Eng 21: pp. 065001 CrossRef
    16. Hsu, QC, Wu, CD, Fang, TH (2005) Studies on nanoimprint process parameters of copper by molecular dynamics analysis. Comput Mater Sci 34: pp. 314-22 CrossRef
    17. Pei, QX, Lu, C, Liu, ZS, Lam, Y (2007) Molecular dynamics study on the nanoimprint of copper. J Phys D Appl Phys 40: pp. 4928 CrossRef
    18. Carrillo, JMY, Dobrynin, AV (2009) Molecular dynamics simulations of nanoimprinting lithography. Langmuir 25: pp. 13244-9 CrossRef
    19. Kang, JH, Kim, KS, Kim, KW (2007) Molecular dynamics study of pattern transfer in nanoimprint lithography. Tribol Lett 25: pp. 93-102 CrossRef
    20. Honeycutt, JD, Andersen, HC (1987) Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J Phys Chem 91: pp. 4950-63 CrossRef
    21. Kelchner, CL, Plimpton, SJ, Hamilton, JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58: pp. 11085-8 CrossRef
    22. Plimpton, S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117: pp. 1-19 CrossRef
    23. Stukowski, A (2010) Visualization and analysis of atomistic simulation data with OVITO鈥搕he Open Visualization Tool. Model Simul Mater Sci Eng 18: pp. 015012 CrossRef
    24. Wilke, N, Mulcahy, A, Ye, S-R, Morrissey, A (2005) Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 36: pp. 650-6 CrossRef
    25. Zhang, JJ, Sun, T, Hartmaier, A, Yan, YD (2012) Atomistic simulation of the influence of nanomachining-induced deformation on subsequent nanoindentation. Comput Mater Sci 59: pp. 14-21 CrossRef
    26. Yamakov, V, Wolf, D, Phillpot, SR, Gleiter, H (2002) Deformation twinning in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 50: pp. 5005-20 CrossRef
    27. Wang, J, Huang, HC (2004) Shockley partial dislocations to twin: another formation mechanism and generic driving force. Appl Phys Lett 85: pp. 5983 CrossRef
    28. H訐hner, P (1996) Stochastic dislocation patterning during cyclic plastic deformation. Appl Phys A 63: pp. 45-55 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
In the present work, we perform molecular dynamics simulations corroborated by experimental validations to elucidate the underlying deformation mechanisms of single-crystalline aluminum under direct imprint using a rigid silicon master. We investigate the influence of crystallographic orientation on the microscopic deformation behavior of the substrate materials and its correlation with the macroscopic pattern replications. Furthermore, the surface mechanical properties of the patterned structures are qualitatively characterized by nanoindentation tests. Our results reveal that dislocation slip and deformation twinning are two primary plastic deformation modes of single-crystalline aluminum under the direct imprint. However, both the competition between the individual deformation mechanisms and the geometry between activated dislocation slip systems and imprinted surface vary with surface orientation, which in turn leads to a strong crystallographic orientation dependence of the pattern replications. It is found that the (010) orientation leads to a better quality of pattern replication of single-crystalline aluminum than the (111) orientation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700