用户名: 密码: 验证码:
Enrichment of statistical power for genome-wide association studies
详细信息    查看全文
  • 作者:Meng Li (1) (2)
    Xiaolei Liu (2)
    Peter Bradbury (3)
    Jianming Yu (4)
    Yuan-Ming Zhang (5)
    Rory J Todhunter (6)
    Edward S Buckler (2) (3)
    Zhiwu Zhang (2) (7) (8)

    1. College of Horticulture
    ; Nanjing Agricultural University ; Nanjing ; 210095 ; China
    2. Institute for Genomic Diversity
    ; Cornell University ; Ithaca ; New York ; 14853 ; USA
    3. United States Department of Agriculture (USDA) 鈥?Agricultural Research Service (ARS)
    ; Ithaca ; New York ; 14853 ; USA
    4. Department of Agronomy
    ; Kansas State University ; Manhattan ; Kansas ; 66506 ; USA
    5. State Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement
    ; College of Agriculture ; Nanjing Agricultural University ; Nanjing ; 210095 ; China
    6. Department of Clinical Sciences
    ; College of Veterinary Medicine ; Cornell University ; Ithaca ; New York ; 14853 ; USA
    7. College of Agronomy
    ; Northeast Agricultural University ; Harbin ; Heilongjiang ; 150030 ; China
    8. Department of Crop and Soil Science
    ; Washington State University ; Pullman ; WA ; 99164 ; USA
  • 关键词:Genome wide association study ; population structure ; kinship ; mixed model ; cluster analysis
  • 刊名:BMC Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:12
  • 期:1
  • 全文大小:1,856 KB
  • 参考文献:1. Huang, X, Wei, X, Sang, T, Zhao, Q, Feng, Q, Zhao, Y, Li, C, Zhu, C, Lu, T, Zhang, Z, Li, M, Fan, D, Guo, Y, Wang, A, Wang, L, Deng, L, Li, W, Lu, Y, Weng, Q, Liu, K, Huang, T, Zhou, T, Jing, Y, Lin, Z, Buckler, ES, Qian, Q, Zhang, QF, Li, J, Han, B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42: pp. 961-967 CrossRef
    2. Speliotes, EK, Willer, CJ, Berndt, SI, Monda, KL, Thorleifsson, G, Jackson, AU, Lango Allen, H, Lindgren, CM, Luan, J, Magi, R, Randall, JC, Vedantam, S, Winkler, TW, Qi, L, Workalemahu, T, Heid, IM, Steinthorsdottir, V, Stringham, HM, Weedon, MN, Wheeler, E, Wood, AR, Ferreira, T, Weyant, RJ, Segre, AV, Estrada, K, Liang, L, Nemesh, J, Park, JH, Gustafsson, S, Kilpelainen, TO (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42: pp. 937-948 CrossRef
    3. Pharoah, PD, Tsai, YY, Ramus, SJ, Phelan, CM, Goode, EL, Lawrenson, K, Buckley, M, Fridley, BL, Tyrer, JP, Shen, H, Weber, R, Karevan, R, Larson, MC, Song, H, Tessier, DC, Bacot, F, Vincent, D, Cunningham, JM, Dennis, J, Dicks, E, Aben, KK, Anton-Culver, H, Antonenkova, N, Armasu, SM, Baglietto, L, Bandera, EV, Beckmann, MW, Birrer, MJ, Bloom, G, Bogdanova, N (2013) GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 45: pp. 362-370 CrossRef
    4. Rietveld, CA, Medland, SE, Derringer, J, Yang, J, Esko, T, Martin, NW, Westra, HJ, Shakhbazov, K, Abdellaoui, A, Agrawal, A, Albrecht, E, Alizadeh, BZ, Amin, N, Barnard, J, Baumeister, SE, Benke, KS, Bielak, LF, Boatman, JA, Boyle, PA, Davies, G, Leeuw, C, Eklund, N, Evans, DS, Ferhmann, R, Fischer, K, Gieger, C, Gjessing, HK, Hagg, S, Harris, JR, Hayward, C (2013) GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340: pp. 1467-1471 CrossRef
    5. Thornton, KR, Foran, AJ, Long, AD (2013) Properties and modeling of GWAS when complex disease risk is due to non-complementing, deleterious mutations in genes of large effect. Plos Genetics 9: pp. e1003258 CrossRef
    6. Segura, V, Vilhjalmsson, BJ, Platt, A, Korte, A, Seren, U, Long, Q, Nordborg, M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44: pp. 825-830 CrossRef
    7. Thornsberry, JM, Goodman, MM, Doebley, J, Kresovich, S, Nielsen, D, Buckler, ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28: pp. 286-289 CrossRef
    8. Ioannidis, JPA (2005) Why most published research findings are false. Plos Medicine 2: pp. 696-701
    9. Moonesinghe, R, Khoury, MJ, Janssens, AC (2007) Most published research findings are false-but a little replication goes a long way. PLoS Med 4: pp. e28 CrossRef
    10. Abiola, O, Angel, JM, Avner, P, Bachmanov, AA, Belknap, JK, Bennett, B, Blankenhorn, EP, Blizard, DA, Bolivar, V, Brockmann, GA, Buck, KJ, Bureau, JF, Casley, WL, Chesler, EJ, Cheverud, JM, Churchill, GA, Cook, M, Crabbe, JC, Crusio, WE, Darvasi, A, Haan, G, Dermant, P, Doerge, RW, Elliot, RW, Farber, CR, Flaherty, L, Flint, J, Gershenfeld, H, Gibson, JP, Gu, J (2003) The nature and identification of quantitative trait loci: a community's view. Nat Rev Genet 4: pp. 911-916
    11. Zou, W, Zeng, ZB (2008) Statistical methods for mapping multiple QTL. Int J Plant Genomics 2008: pp. 286561 CrossRef
    12. Yang, J, Benyamin, B, McEvoy, BP, Gordon, S, Henders, AK, Nyholt, DR, Madden, PA, Heath, AC, Martin, NG, Montgomery, GW, Goddard, ME, Visscher, PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42: pp. 565-569 CrossRef
    13. Buckler, ES, Holland, JB, Bradbury, PJ, Acharya, CB, Brown, PJ, Browne, C, Ersoz, E, Flint-Garcia, S, Garcia, A, Glaubitz, JC, Goodman, MM, Harjes, C, Guill, K, Kroon, DE, Larsson, S, Lepak, NK, Li, H, Mitchell, SE, Pressoir, G, Peiffer, JA, Rosas, MO, Rocheford, TR, Romay, MC, Romero, S, Salvo, S, Sanchez Villeda, H, Silva, HS, Sun, Q, Tian, F, Upadyayula, N (2009) The genetic architecture of maize flowering time. Science 325: pp. 714-718 CrossRef
    14. Pritchard, JK, Stephens, M, Rosenberg, NA, Donnelly, P (2000) Association mapping in structured populations. Am J Hum Genet 67: pp. 170-181 CrossRef
    15. Patterson, N, Price, AL, Reich, D (2006) Population structure and eigenanalysis. PLoS Genet 2: pp. e190 CrossRef
    16. Price, AL, Patterson, NJ, Plenge, RM, Weinblatt, ME, Shadick, NA, Reich, D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38: pp. 904-909 CrossRef
    17. Zhao, K, Aranzana, MJ, Kim, S, Lister, C, Shindo, C, Tang, C, Toomajian, C, Zheng, H, Dean, C, Marjoram, P, Nordborg, M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3: pp. e4 CrossRef
    18. Voight, BF, Pritchard, JK (2005) Confounding from cryptic relatedness in case鈥揷ontrol association studies. PLoS Genet 1: pp. e32 CrossRef
    19. Consortium, WTCC (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: pp. 661-678 CrossRef
    20. Yu, J, Pressoir, G, Briggs, WH, Vroh Bi, I, Yamasaki, M, Doebley, JF, McMullen, MD, Gaut, BS, Nielsen, DM, Holland, JB, Kresovich, S, Buckler, ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38: pp. 203-208 CrossRef
    21. Zhang, Z, Ersoz, E, Lai, CQ, Todhunter, RJ, Tiwari, HK, Gore, MA, Bradbury, PJ, Yu, J, Arnett, DK, Ordovas, JM, Buckler, ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42: pp. 355-360 CrossRef
    22. Henderson, CR (1984) Applications of Linear Models in Animal Breeding. University of Guelph, Guelph, Ontario
    23. Bradbury, PJ, Zhang, Z, Kroon, DE, Casstevens, TM, Ramdoss, Y, Buckler, ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23: pp. 2633-2635 CrossRef
    24. Jardine, N, Sibson, R (1971) Mathematical Taxonomy. Wiley, London
    25. Soka, LRR, Michener, CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38: pp. 1409-1438
    26. Atwell, S, Huang, YS, Vilhjalmsson, BJ, Willems, G, Horton, M, Li, Y, Meng, D, Platt, A, Tarone, AM, Hu, TT, Jiang, R, Muliyati, NW, Zhang, X, Amer, MA, Baxter, I, Brachi, B, Chory, J, Dean, C, Debieu, M, Meaux, J, Ecker, JR, Faure, N, Kniskern, JM, Jones, JD, Michael, T, Nemri, A, Roux, F, Salt, DE, Tang, C, Todesco, M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465: pp. 627-631 CrossRef
    27. Zhou, Z, Sheng, X, Zhang, Z, Zhao, K, Zhu, L, Guo, G, Friedenberg, SG, Hunter, LS, Vandenberg-Foels, WS, Hornbuckle, WE, Krotscheck, U, Corey, E, Moise, NS, Dykes, NL, Li, J, Xu, S, Du, L, Wang, Y, Sandler, J, Acland, GM, Lust, G, Todhunter, RJ (2010) Differential genetic regulation of canine hip dysplasia and osteoarthritis. PLoS One 5: pp. e13219 CrossRef
    28. Guo, G, Zhou, Z, Wang, Y, Zhao, K, Zhu, L, Lust, G, Hunter, L, Friedenberg, S, Li, J, Zhang, Y, Harris, S, Jones, P, Sandler, J, Krotscheck, U, Todhunter, R, Zhang, Z (2010) Canine hip dysplasia is predictable by genotyping. Osteoarthritis Cartilage 19: pp. 420-429 CrossRef
    29. Lai, CQ, Arnett, DK, Corella, D, Straka, RJ, Tsai, MY, Peacock, JM, Adiconis, X, Parnell, LD, Hixson, JE, Province, MA, Ordovas, JM (2007) Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study. Arterioscler Thromb Vasc Biol 27: pp. 1417-1425 CrossRef
    30. Zhang, Z, Zhu, L, Sandler, J, Friedenberg, SS, Egelhoff, J, Williams, AJ, Dykes, NL, Hornbuckle, W, Krotscheck, U, Moise, NS, Lust, G, Todhunter, RJ (2009) Estimation of heritabilities, genetic correlations, and breeding values of four traits that collectively define hip dysplasia in dogs. Am J Vet Res 70: pp. 483-492 CrossRef
    31. Long, AD, Langley, CH (1999) The power of association studies to detect the contribution of candidate genetic loci to variation in complex traits. Genome Res 9: pp. 720-731
    32. Littell, RC, Milliken, GA, Stroup, WW, Wolfinger, RD, Schabenberger, O (2006) SAS for Mixed Models. SAS Institute Inc, Cary NC, Cary NC
    33. Loiselle, BA, Sork, VL, Nason, J, Graham, C (1995) Spatial genetic-structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82: pp. 1420-1425 CrossRef
    34. Romesberg, HC (2004) Cluster Analysis for Researchers. LULU Press, North Carolina, USA
    35. Lipka, AE, Tian, F, Wang, Q, Peiffer, J, Li, M, Bradbury, PJ, Gore, MA, Buckler, ES, Zhang, Z (2012) GAPIT: Genome association and prediction integrated tool. Bioinformatics 28: pp. 2397-2399 CrossRef
  • 刊物主题:Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1741-7007
文摘
Background The inheritance of most human diseases and agriculturally important traits is controlled by many genes with small effects. Identifying these genes, while simultaneously controlling false positives, is challenging. Among available statistical methods, the mixed linear model (MLM) has been the most flexible and powerful for controlling population structure and individual unequal relatedness (kinship), the two common causes of spurious associations. The introduction of the compressed MLM (CMLM) method provided additional opportunities for optimization by adding two new model parameters: grouping algorithms and number of groups. Results This study introduces another model parameter to develop an enriched CMLM (ECMLM). The parameter involves algorithms to define kinship between groups (that is, kinship algorithms). The ECMLM calculates kinship using several different algorithms and then chooses the best combination between kinship algorithms and grouping algorithms. Conclusion Simulations show that the ECMLM increases statistical power. In some cases, the magnitude of power gained by using ECMLM instead of CMLM is larger than the improvement found by using CMLM instead of MLM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700