用户名: 密码: 验证码:
MINERALS OF THE SYSTEM ZnS–CdS FROM FUMAROLES OF T
详细信息   在线全文   PDF全文下载
摘要

Minerals of the system ZnS–CdS formed between 400 and 725°C in active fumaroles at the Kudriavy volcano, Iturup Island, Russia, were studied using scanning electron microscopy with energy dispersion, X-ray diffraction and with an electron microprobe. The composition of these minerals varies widely: Zn 2.46–57.7, Cd 2.38–69.5, Fe 0.72–13.6 wt.%, and thus covers almost the entire ZnS–CdS series. Two types of solid solutions occur: cubic, from 0 to ∼8 mol.% CdS, and hexagonal, from α17 to 100 mol.% CdS, separated by a two-phase transition zone. Three different mechanisms of substitution account for the range of composition: Zn-for-Fe in sphalerite, Zn-for-Cd in wurtzite–greenockite, and Cd-for-Fe in greenockite. The incorporation of Cu and In, up to 2.92 and 4.75 wt.%, respectively, is noted in sphalerite, and up to 1.27 wt.% Cu and 2.75 wt.% In, respectively, in minerals of the wurtzite–greenockite series. Both elements evidently occur as the roquesite component in solid solution. Zinc-rich species are metal-deficient, whereas Cd-rich species are sulfur-deficient. The range of nonstoichiometry in minerals of the system ZnS–CdS studied is in the order of 2.6 at.%, or 0.05 apfu S. We conclude that there is not a complete solid-solution between wurtzite and greenockite in the temperature range studied owing to a phase transition in ZnS and a change in the structure type. Phase relations for the temperature range studied proved to be identical with those established for synthetic compounds. In a fumarolic environment, crystals of Cd-rich sulfides of the system ZnS–CdS precipitate mainly at lower temperatures (400°C) than those of Zn (up to 725°C).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700