用户名: 密码: 验证码:
Comparative in situ X-ray diffraction study of San Carlos olivine: In
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:Jiuhua Chen ; Haozhe Liu ; Jennifer Girard
  • Publisher:Mineralogical Society of America
  • Date:2011-
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2011.3602
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:96
  • issue:5-6
  • firstpage:697
  • section:Articles
摘要

A comparative study of the equation of states of hydrous (0.4 wt% H2O) and anhydrous San Carlos olivine (<30 ppm H2O) was conducted using synchrotron X-rays up to 11 GPa in a diamond anvil cell (DAC) at ambient temperature. Both samples were loaded in the same high-pressure chamber of the DAC to eliminate the possible pressure difference in different experiments. The obtained compression data were fitted to the third-order Birch-Murnaghan equation of state, yielding a bulk modulus K0 = 123(3) GPa for hydrous olivine and K0 = 130(4) GPa for anhydrous olivine as K0′ is fixed at 4.6. Therefore, 0.4 wt% H2O in olivine results in a 5% reduction in bulk modulus. Previous studies reported bulk modulus reduction by water in olivine’s high-pressure polymorph (wadsleyite), to which the transformation from olivine gives rise to the seismic discontinuity at 410 km depth. The new data results in a reduction in the magnitude of the discontinuity by 50% in vP and 30% in vS (for 1:5 water partitioning between olivine and wadsleyite) with respect to anhydrous mantle. Previous knowledge of the influence of water on this phase transition has been in opposition to a large amount of water [e.g., 200 ppm by Wood (1995)] existing at 410 km depth. Calculation of the seismic velocities based on newly available elasticity data of the hydrous phases indicates that the presence of water is favorable for the mineral composition model (pyrolite) and seismic observations in terms of the magnitude of the 410 km discontinuity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700