用户名: 密码: 验证码:
Are Active Mid-Plate Fault Zones of the Central United States Interconnected?
详细信息      PDF全文下载
  • journal_title:Seismological Research Letters
  • Contributor:D. B. Slemmons ; A. R. Ramelli
  • Publisher:Seismological Society of America
  • Date:1988-10-01
  • Format:text/html
  • Language:en
  • Identifier:10.1785/gssrl.59.4.312
  • journal_abbrev:Seismological Research Letters
  • issn:0895-0695
  • volume:59
  • issue:4
  • firstpage:312
  • section:Abstracts
摘要

It is generally assumed that faults in mid-plate regions, such as central and eastern United States (CEUS), unless historically active, are inactive and/or lack a potential for large earthquakes. The Meers fault in Oklahoma, located in an historically aseismic area, is a spectacular exception to this rule. Paleoseismic studies of this fault show that the most recent large event occurred about 1200 years ago, had a magnitude of more that MS = 7 or 7.5, a surface rupture of 40 km length, and several meters of net displacement on a major left-lateral fault (Ramelli and Slemmons, in press).

At least four fault zones in other parts of CEUS indicate that the Meers faulting event is not unique, including: (1) New Madrid epicentral region with three events of about MS = 8 in 1811 and 1812 with surface faulting and deformation (Russ, 1982), (2) Washita Valley fault (Cox and VanArsdale, 1986), (3) Kentucky River fault (VanArsdale, 1986), and possibly (4) faulting near Pierre, South Dakota (Nichols and Collins, 1987). Moreover, such midplate active faults are not unique, for there are at last four similar examples of historical seismogenic faulting (McCue and others, 1987) with earthquakes of up to 6.9 magnitude.

Most active fault zones can be dearly demonstrated to be parts of branching or interconnected tectonic systems, implying transfer of stress and strain along zones of deformation. We speculate that tectonically active mid-plate fault zones may also be parts of much longer, interconnected active systems, rather than isolated “hot spots” of activity resulting solely from the response of local crustal flaws to a regional stress field.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700