用户名: 密码: 验证码:
The Development of a Gridded Weather Typing Classification Scheme
详细信息   
  • 作者:Lee ; Cameron C. ; Ph.D.
  • 学历:Ph.D.
  • 年:2014
  • 关键词:Synoptic climatology ; Climate classification ; Clim
  • 导师:Sheridan, Scott
  • 毕业院校:Kent State University
  • Department:Geography
  • 专业:Geography, Physical geography, Climate Change, Meteorology, Atmospheric sciences, Environmental science
  • ISBN:9781303875038
  • CBH:3618946
  • Country:USA
  • 语种:English
  • FileSize:11678996
  • Pages:266
文摘
Since their development in the 1990s, gridded reanalysis data sets have proven quite useful for a broad range of synoptic climatological analyses, especially those utilizing a map pattern classification approach. However, their use in broad-scale, surface weather typing classifications and applications have not yet been explored. This research details the development of such a gridded weather typing classification (GWTC) scheme using North American Regional Reanalysis data for 1979-2010 for the continental United States.
    
    
    Utilizing eight-times daily observations of temperature, dew point, pressure, cloud cover, u-wind and v-wind components, the GWTC categorizes the daily surface weather of 2,070 locations into one of 11 discrete weather types, nine core types and two transitional types, that remain consistent throughout the domain. Due to the use of an automated deseasonalized z-score initial typing procedure, the character of each type is both geographically and seasonally relative, allowing each core weather type to occur at every location, at any time of the year. Diagnostic statistics reveal a high degree of spatial cohesion among the weather types classified at neighboring locations, along with an effective partitioning of the climate variability of individual locations (via a Variability Skill Score metric) into these 11 weather types. Daily maps of the spatial distribution of GWTC weather types across the United States correspond well to traditional surface weather maps, and comparisons of the GWTC with the Spatial Synoptic Classification are also favorable.
    
    
    While the potential future utility of the classification is expected to be primarily for the resultant calendars of daily weather types at specific locations, the automation of the methodology allows the classification to be easily repeatable, and therefore, easily transportable to other locations, atmospheric levels, and data sets (including output from gridded general circulation models). Further, the enhanced spatial resolution of the GWTC may also allow for new applications of surface weather typing classifications in mountainous and rural areas not well represented by airport weather stations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700