用户名: 密码: 验证码:
Output-only Modal Analysis using Continuous-Scan Laser Doppler Vibrometry and application to a 20 kW wind turbine
详细信息查看全文 | 推荐本文 |
摘要
Continuous-Scan Laser Doppler Vibrometry (CSLDV) is a technique where the measurement point continuously sweeps over a structure while measuring, capturing both spatial and temporal information. The continuous-scan approach can greatly accelerate measurements, allowing one to capture spatially detailed mode shapes in the same amount of time that conventional methods require to measure the response at a single point. The method is especially beneficial when testing large structures, such as wind turbines, that have low natural frequencies and hence may require very long time records at each measurement point. Several CSLDV methods have been presented that use sinusoidal excitation or impulse excitation, but CSLDV has not previously been employed with an unmeasured, broadband random input. This work extends CSLDV to that class of input, developing an Output-only Modal Analysis method (OMA-CSLDV). A recently developed algorithm for linear time-periodic system identification, which makes use of harmonic power spectra and the harmonic transfer function concept developed by Wereley [17], is used in conjunction with CSLDV measurements. One key consideration, the choice of the scan frequency, is explored. The proposed method is validated on a randomly excited free-free beam, where one-dimensional mode shapes are captured by scanning the laser along the length of the beam. The first seven natural frequencies and mode shapes are extracted from the harmonic power spectrum of the vibrometer signal and show good agreement with the analytically-derived modes of the beam. The method is then applied to identify the mode shapes of a parked 20 kW wind turbine using a ground based laser and with only a light breeze providing excitation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700