用户名: 密码: 验证码:
Modelling earthquake activity features using cellular automata
详细信息查看全文 | 推荐本文 |
摘要
Cellular automata (CA) are a powerful technique for modelling otherwise intractably complex systems. On the other hand, earthquake can be defined as a spatially extended dissipative dynamic system that naturally evolves into a critical state with no characteristic time or length scales. In this paper, a two-dimensional CA model capable of reproducing some prominent features of earthquake data is presented. The proposed model with continuous states and discrete time, comprises cell-charges and aims at simulating earthquake activity with the usage of potentials. Several measurements have been carried out at different critical states, leading to different paths to criticality, for various cascade (earthquake) sizes, various cell activities and different neighbourhood sizes. Most notably, the produced simulation results emulate the Gutenberg–Richter (GR) scaling law, in both quantitative and qualitative way. Furthermore, the CA model has been implemented with a user-friendly interface and the user can change several of its parameters, in order to study various hypotheses concerning the aforementioned earthquake activity features.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700