用户名: 密码: 验证码:
Performance and degradation of high temperature polymer electrolyte fuel cell catalysts
详细信息查看全文 | 推荐本文 |
摘要
An investigation of carbon-supported Pt/C and PtCo/C catalysts was carried out with the aim to evaluate their stability under high temperature polymer electrolyte membrane fuel cell (PEMFC) operation. Carbon-supported nanosized Pt and PtCo particles with a mean particle size between 1.5 nm and 3 nm were prepared by using a colloidal route. A suitable degree of alloying was obtained for the PtCo catalyst by using a carbothermal reduction. The catalyst stability was investigated to understand the influence of carbon black corrosion, platinum dissolution and sintering in gas-fed sulphuric acid electrolyte half-cell at 75 °C and in PEMFC at 130 °C. Electrochemical active surface area and catalyst performance were determined in PEMFC at 80 °C and 130 °C. A maximum power density of about 700 mW cm−2 at 130 °C and 3 bar abs. O2 pressure with 0.3 mg Pt cm−2 loading was achieved. The PtCo alloy showed a better stability than Pt in sulphuric acid after cycling; yet, the PtCo/C catalyst showed a degradation after the carbon corrosion test. The PtCo/C catalyst showed smaller sintering effects than Pt/C after accelerated degradation tests in PEMFC at 130 °C.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700