用户名: 密码: 验证码:
Beneficial effects of Mg-excess in La1-xSrxGa1-yMgy + zO3-未 as solid electrolyte
详细信息查看全文 | 推荐本文 |
摘要
One of the paramount obstacles to the commercialization of La1-xSrxGa1-yMgyO3-未 (LSGM)-based intermediate-temperature solid oxide fuel cells is the high cost and low mechanical strength associated with the use of Ga2O3. We demonstrate in this study the use of excess Mg-doping on Ga-site as a means of lowering cost and potentially increasing mechanical strength of the final LSGM product. Conventional techniques such as XRD, SEM and AC impedance spectroscopy are applied to characterize the synthesized Mg-excess La0.8Sr0.2Ga0.83Mg0.17 + zO3-未. The microstructures revealed by SEM indicate an increased appearance of the Mg-rich second phase along the grain-boundaries with increasing Mg-excess level even though regular XRD could not discern the presence of this second phase. Surprisingly, the total oxide-ion conductivity of Mg-excess LSGM becomes progressively higher than the stoichiometric LSGM as the temperature increases, which is also accompanied by a gradual disappearance of the grain-boundary effect. Mechanisms of re-dissolution of the Mg-rich grain-boundary phase at elevated temperatures and formation of dopant-vacancy associates are proposed to interpret the observed compositional as well as the grain-boundary effect on the total ionic conductivity. Overall, no alarming adversary effect on oxide-ion conductivity of LSGM from Mg-excess doping (up to 10 mol%) has been found in this study.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700