用户名: 密码: 验证码:
Greenhouse gas soil production and surface fluxes at a high arctic polar oasis
详细信息查看全文 | 推荐本文 |
摘要
Arctic vegetation and soil biological communities interact with a range of biotic and abiotic factors to produce or consume the greenhouse gases (GHG) carbon dioxide, methane, and nitrous oxide. In Arctic environments the parameters controlling these processes are not well understood. We measured soil GHG concentrations and surface fluxes from six vegetation communities at a High Arctic polar oasis and adjacent polar deserts in order to identify regions within the soil profile of production and consumption of CO2, CH4, and N2O. Examined communities included two polar deserts differing in parent material and聽soil pH, and four lowland tundra communities: prostrate dwarf-shrub, herb tundra, prostrate/hemiprostrate dwarf-shrub tundra, nontussock sedge, dwarf-shrub, moss tundra and a sedge/grass, moss wetland, representative of large areas at lower Arctic latitudes. Polar desert soils were net producers of greenhouse gases during the brief High Arctic growing season, including at depths close to the permafrost layer, and effluxes from the surface were of a similar magnitude to nearby mesic and hydric tundra soils including for CO2, indicative of soil respiration in desert soils with few roots. Differences in water content, rather than calculated diffusivity, appear to drive gas transport in at least some soils, with all three GHG appearing to move rapidly through, for example, the soil at 10聽cm above permafrost in the Prostrate (dominated by Dryas integrifolia) plant community. Such physical processes may obscure or falsely suggest biological processes in soil ecosystems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700