用户名: 密码: 验证码:
Angular directivity of thermal coagulation using air-cooled direct-coupled interstitial ultrasound applicators
详细信息查看全文 | 推荐本文 |
摘要
The performance characteristics and thermal coagulation of tissue produced by directional air-cooled, direct-coupled interstitial ultrasound (US) applicators were evaluated. Prototype applicators (2.2 mm o.d.) were constructed using cylindrical transducers sectored into angular active zones of 90o, 200o, 270o, and 360o. Acoustic characterization of the applicators showed the beam output to be angularly directed from the active sector of the transducer and collimated within the axial extent. Empirical determination of the average convective heat transfer coefficient, resulting from airflow cooling the inner surface of the transducer, showed significantly high levels of transfer (> 700 W m−2 oC−1) with a flow rate of 5.6 L min−1. Thermal performance of the applicators was characterized through high temperature heating in vivo (porcine thigh muscle, 11 trials) and in vitro (bovine liver, 46 trials). Results demonstrated directional coagulation of tissue, with good correlation between the angular extent of the lesions and the active acoustic sector. Radial depth of coagulation with a 200o applicator extended 8–17 mm, with a heating time of 1–10 min, respectively. Angular and axial lesion shape remained similar over the course of 1–10 min heating trials. Implementation of air-cooling within direct-coupled interstitial US applicators provided enhanced directivity of heating in angular and axial dimensions, and significantly increased the power handling and radial depth of tissue coagulation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700