用户名: 密码: 验证码:
Atomic layer deposition of ZnO on thermal SiO2 and Si surfaces using N2-diluted diethylzinc and H2O2 precursors
详细信息查看全文 | 推荐本文 |
摘要
ZnO nanodots are attracting more and more attention in various photoelectrical applications due to multiple excition generation. In this article, atomic layer deposition (ALD) growth of ZnO nanodots has been realized for the first time on both thermal SiO2 and Si surfaces using N2-diluted gaseous DEZn and H2O2 precursors. The experimental results indicate that the ALD ZnO exhibits a nano-crystalline film with corrugated surfaces in the case of the deposition temperature of 200 掳C, likely due to concrescence among ZnO nanodots. When the deposition temperature is increased up to 300 掳C, ZnO is grown in the form of well-discrete nanodots. This is due to increased desorption of the reacting molecules and a reduction of nucleation sites on the growing surfaces at 300 掳C, thus leading to the reaction between DEZn and OH groups only on some favorable sites from thermodynamic and energy points of view. In terms of the thermal SiO2 surface, ZnO nanodots with a density of around 5 脳 1010 cm鈭? are obtained for 100 cycles. As for the Si surface, ZnO nanodots with a density as high as 鈭? 脳 1011 cm鈭? are achieved for 50 cycles. Finally, the X-ray photoelectron spectroscopy and X-ray diffraction analyses reveal that the ALD ZnO at 300 掳C is dominated by ZnO bonds together with a small quantity of ZnOH bonds, and the deposition temperature of 300 掳C can result in preferential growth of ZnO (0 0 2) orientation and a bigger crystallite size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700