用户名: 密码: 验证码:
Investigation of sample introduction- and plasma-related matrix effects in inductively coupled plasma spectrometry applying single analyte droplet and particle injection
详细信息查看全文 | 推荐本文 |
摘要
Analyte atomization in an inductively coupled argon plasma is studied with spatial and temporal resolution by simultaneous side- and end-on emission spectroscopy. The samples are either introduced as single monodisperse microdroplets of analyte solution or in form of spherical nano- or microparticles with narrow size distributions embedded in microdroplets. While end-on spectroscopy provides quantitative information on the total atomization process during the transport through the ICP of a single injection event, side-on measurements deliver the spatial positions of the processes. It is shown that there are significant spatial shifts of the position of analyte atomization in dependence on injector gas flow, droplet size, analyte mass, and the mass of accompanying elements. These shifts have direct influence on the size of the analyte clouds at a particular position in the ICP, e.g., at the position of the sampler of a mass spectrometer in ICP-MS, and, therefore, on the detection efficiency of this technique. Furthermore, the dynamic processes of analyte ionization as well as element dependent diffusion were studied with spatial and temporal resolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700