用户名: 密码: 验证码:
Dynamic fuzzy c-means (dFCM) clustering and its application to calorimetric data reconstruction in high-energy physics
详细信息查看全文 | 推荐本文 |
摘要
In high-energy physics experiments, calorimetric data reconstruction requires a suitable clustering technique in order to obtain accurate information about the shower characteristics such as the position of the shower and energy deposition. Fuzzy clustering techniques have high potential in this regard, as they assign data points to more than one cluster, thereby acting as a tool to distinguish between overlapping clusters. Fuzzy c-means (FCM) is one such clustering technique that can be applied to calorimetric data reconstruction. However, it has a drawback: it cannot easily identify and distinguish clusters that are not uniformly spread. A version of the FCM algorithm called dynamic fuzzy c-means (dFCM) allows clusters to be generated and eliminated as required, with the ability to resolve non-uniformly distributed clusters. Both the FCM and dFCM algorithms have been studied and successfully applied to simulated data of a sampling tungsten-silicon calorimeter. It is seen that the FCM technique works reasonably well, and at the same time, the use of the dFCM technique improves the performance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700