用户名: 密码: 验证码:
Efficient production of glycyrrhetic acid 3-O-mono-尾-d-glucuronide by whole-cell biocatalysis in an ionic liquid/buffer biphasic system
详细信息查看全文 | 推荐本文 |
摘要
Hydrolysis of glycyrrhizin (GL) to glycyrrhetic acid 3-O-mono-尾-d-glucuronide (GAMG) by whole-cell biocatalysts in a system containing non-conventional solvents was performed. Three whole-cell biocatalysts were used, including wild-type Penicillium purpurogenum Li-3 (w-PGUS) and recombinant strains Escherichia coli BL21 and Pichia pastoris GS115. The biotransformation of GL to GAMG by w-PGUS in a 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6)/buffer biphasic system was the main focus of this study because w-PGUS showed a higher GAMG yield and a higher relative activity in this system than the other two whole-cell biocatalysts. Using the optimized reaction conditions determined as a pH 5.2 buffer, a 6.0 mM substrate concentration, a reaction temperature of 30 掳C, and a 60 g/L (1.23 U/g) cell concentration, a GAMG yield of 87.63%was achieved after 60 h. After eight reaction cycles, [Bmim]PF6 retained a high recovery percentage (85.48%)[0], indicating the reusability of this IL. The biotransformation activity of w-PGUS was not significantly affected, even after two batch reaction cycles. Furthermore, the product GAMG and the byproduct glycyrrhetinic acid were spontaneously separated in the biphasic system. In conclusion, the combination of whole cells and ionic liquid is a promising approach for economical and industrial-scale production of GAMG.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700