用户名: 密码: 验证码:
Kinematic adaptations to a variable stiffness shoe: Mechanisms for reducing joint loading
详细信息查看全文 | 推荐本文 |
摘要
A recently described variable-stiffness shoe has been shown to reduce the adduction moment and pain in patients with medial-compartment knee osteoarthritis. The mechanism associated with how this device modifies overall gait patterns to reduce the adduction moment is not well understood. Yet this information is important for applying load modifying intervention for the treatment of knee osteoarthritis.

A principal component analysis (PCA) was used to test the hypothesis that there are differences in the frontal plane kinematics that are correlated with differences in the ground reaction forces (GRFs) and center of pressure (COP) for a variable-stiffness compared to a constant-stiffness control shoe. Eleven healthy adults were tested in a constant-stiffness control shoe and a variable-stiffness shoe while walking at self-selected speeds. The PCA was performed on trial vectors consisting of all kinematic, GRF and COP data.

The projection of trial vectors onto the linear combination of four PCs showed there were significant differences between shoes. The interpretation of the PCs indicated an increase in the ankle eversion, knee abduction and adduction, decreases in the hip adduction and pelvic obliquity angles and reduced excursion of both the COP and peak medial-lateral GRFs for the variable-stiffness compared to the control shoe.

The variable-stiffness shoe produced a unique dynamic change in the frontal plane motion of the ankle, hip and pelvis that contributed to changes in the GRF and COP and thus reduced the adduction moment at a critical instant during gait suggesting a different mechanism that was seen with fixed interventions (e.g. wedges).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700