用户名: 密码: 验证码:
Effect of the size of media on grinding performance in stirred mills
详细信息查看全文 | 推荐本文 |
摘要
This work investigated the effect of grinding medium size on the wet milling performance in stirred mills using a combined numerical and experimental approach. Physical experiments were performed in a 1.4L stirred mill with the discs rotating at different speeds to grind aluminium hydroxide powders with different sized glass beads. The results showed that the grinding process followed the first order kinetics and the grinding rate increased with increasing disc speeds. While 4 mm glass beads had slightly larger grinding rates than 2 mm and 6 mm glass beads, the differences were generally within 5%, indicating their weak dependence. On the other hand, the energy consumption increased significantly for the large grinding media. Simulations based on the combined discrete element method (DEM) and computational fluid dynamics (CFD) approach were performed under similar conditions. The simulated flow patterns and power draws were comparable to those measured. The total impact energy, which is the summation of all collision energy, had a unified power law relationship with the grinding rate for all grinding conditions. It is expected that the ratio of total impact energy and input power, which decreased for larger grinding media in the present study, can be used to describe the grinding efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700