用户名: 密码: 验证码:
Scheduling for heterogeneous Systems using constrained critical paths
详细信息查看全文 | 推荐本文 |
摘要
A complex computing problem may be efficiently solved on a system with multiple processing elements by dividing its implementation code into several tasks or modules that execute in parallel. The modules may then be assigned to and scheduled on the processing elements so that the total execution time is minimum. Finding an optimal schedule for parallel programs is a non-trivial task and is considered to be NP-complete.

For heterogeneous systems having processors with different characteristics, most of the scheduling algorithms use greedy approach to assign processors to the modules. This paper suggests a novel approach called constrained earliest finish time (CEFT) to provide better schedules for heterogeneous systems using the concept of the constrained critical paths (CCPs). In contrast to other approaches used for heterogeneous systems, the CEFT strategy takes into account a broader view of the input task graph. Furthermore, the statically generated CCPs may be efficiently scheduled in comparison with other approaches.

The experimentation results show that the CEFT scheduling strategy outperforms the well-known HEFT, DLS and LMT strategies by producing shorter schedules for a diverse collection of task graphs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700