用户名: 密码: 验证码:
Waterborne exposure to microcystin-LR alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis in zebrafish larvae
详细信息查看全文 | 推荐本文 |
摘要
Microcystin-leucine-arginine (MCLR) is the most toxic and the most commonly encountered variant of microcystins (MCs) in aquatic environment, and it has the potential for disrupting thyroid hormone homeostasis, but the molecular mechanisms underlying this process have not yet been clarified. In the present study, we observed body growth retardation associated with decreased levels of thyroid hormones (THs) in zebrafish larvae, highlighting the interferences of MCLR with the growth of fish larvae. To further our understanding of mechanisms of MCLR-induced endocrine toxicity, quantitative real-time PCR analysis was performed on hypothalamic-pituitary-thyroid (HPT) axis related genes of developing zebrafish embryos exposed to 100, 300 and 500 渭g L鈭? MCLR until 96 h post-fertilization. The expression of several genes in the HPT system, i.e., corticotropin-releasing factor (CRF), thyroid-stimulating hormone (TSH), sodium/iodide symporter (NIS), thyroglobulin (TG), thyroid receptors (TR伪 and TR尾) and iodothyronine deiodinases (Dio1 and Dio2) was examined using quantitatively real-time PCR. The gene expression levels of CRF, TSH, NIS and TG were significantly induced after exposure to 500 渭g L鈭? MCLR. The transcription of TRs gene was down-regulated in a concentration-dependent manner. Up-regulation and down-regulation of Deio1 and Deio2 gene expression, respectively, were observed upon exposure to MCLR. The above results indicated that MCLR could alter gene expression in the HPT axis which might subsequently contribute to MCLR-induced thyroid disruption.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700