用户名: 密码: 验证码:
The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia
详细信息查看全文 | 推荐本文 |
摘要
Different growth factors have been shown to influence the development of form-deprivation myopia and lens-induced ametropias. However, growth factors have relatively little effect on the growth of eyes with unrestricted vision. We investigate whether the combination of insulin-like growth factor 1 (IGF1) and fibroblast growth factor 2 (FGF2) influence ocular growth in eyes with unrestricted vision. Different doses of IGF1 and FGF2 were injected into the vitreous chamber of postnatal chicks. Measurements of ocular dimensions and intraocular pressure (IOP) were made during and at the completion of different treatment paradigms. Histological and immunocytochemical analyses were performed to assess cell death, cellular proliferation and integrity of ocular tissues. Treated eyes had significant increases in equatorial diameter and vitreous chamber depth. With significant variability between individuals, IGF1/FGF2-treatment caused hypertrophy of lens and ciliary epithelia, lens thickness was increased, and anterior chamber depth was decreased. Treated eyes developed myopia, in excess of 15 diopters of refractive error. Shortly after treatment, eyes had increased intraocular pressure (IOP), which was increased in a dose-dependent manner. Seven days after treatment with IGF1 and FGF2 changes to anterior chamber depth, lens thickness and elevated IOP were reduced, whereas increases in the vitreous chamber were persistent. Some damage to ganglion cells was detected in peripheral regions of the retina at 7 days after treatment. We conclude that the extreme myopia in IGF1/FGF2-treated eyes results from increased vitreous chamber depth, decreased anterior chamber depth, and changes in the lens. We propose that factor-induced ocular enlargement and myopia result from changes to the sclera, lens and anterior chamber depth.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700