用户名: 密码: 验证码:
Adaptive space and time numerical simulation of reaction-diffusion models for intracellular calcium dynamics
详细信息查看全文 | 推荐本文 |
摘要
Adaptivity in space and time for the numerical simulation of stochastic and deterministic equations for intracellular calcium dynamics is presented. The modeling of diffusion, reaction and membrane transport of calcium ions in cells leads to a system of reaction-diffusion equations. We describe the modulation of cytosolic and ER calcium concentrations close to the membrane of the cell organelle.

A conforming piecewise linear finite element method is used for the spatial discretization. Linearly implicit methods of Rosenbrock type are used for the time integration. We adopt a hybrid algorithm to solve the stochastic part. The space grid is adjusted to the strong localization of the calcium release following stochastic channel transitions. By automatically adapting the spatial meshes and time steps to the proper scales during the transition of channel states, the method accurately resolves the evolution of intracellular calcium concentrations as well as buffer concentrations. This article emphasizes adaptive and efficient hybrid numerical simulations in two space dimensions. The presented work establishes the basis for future simulations in a realistic 3D geometry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700