用户名: 密码: 验证码:
Hydrogen production by steam-oxidative reforming of bio-ethanol assisted by Laval nozzle arc discharge
详细信息查看全文 | 推荐本文 |
摘要
The hydrogen production from an easily transported liquid feedstock can be an efficient alternative for fuel cells application. The steam-oxidative reforming of bio-ethanol by a novel gliding arc discharge named Laval nozzle arc discharge (LNAD) was investigated in this paper at low temperature and atmospheric pressure. The conversion efficiency and product distributions, mainly of H2 and CO, were studied as functions of O/C ratio, S/C ratio, the ethanol flow rate and input power. The voltage-ampere (V-I) characteristic is also discussed here concerning the non-thermal plasma effect on the bio-ethanol reforming. A high conversion rate and fair H2 yield have been achieved, 90%and 40%respectively. When the ethanol flow rate (Gethanol) was 0.15聽g聽s鈭? and S/C聽=聽2.0, the minimum specific energy requirement of H2 and CO were achieved at O/C聽=聽1.4 with the specific energy input of 55.44聽kJ per ethanol mole, 72.92聽kJ聽mol鈭? and 80.20聽kJ聽mol鈭? respectively. The optimal conditions for ethanol reforming seem to be S/C聽=聽2.0 and O/C聽=聽1.4-1.6, which are higher than those of the reaction's stoichiometry. This paper shows interesting results in comparison with the ethanol reforming assisted by other discharges. Compared with others, it features good conversion rate, low energy consumption and significantly reduced nitrogen oxide emission.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700