用户名: 密码: 验证码:
An extension of spherical harmonics to region-based rotationally invariant descriptors for molecular shape description and comparison
详细信息查看全文 | 推荐本文 |
摘要
The use of spherical harmonics in the molecular sciences is widespread. They have been employed with success in, for instance, the crystallographic fast rotation function, small-angle scattering particle reconstruction, molecular surface visualisation, protein–protein docking, active site analysis and protein function prediction. An extension of the spherical harmonic expansion method is presented here that enables regions (bodies) rather than contours (surfaces) to be described and which lends itself favourably to the construction of rotationally invariant shape descriptors. This method introduces a radial term that extends the spherical harmonics to 3D polynomials. These polynomials maintain the advantages of the spherical harmonics (orthonormality, completeness, uniqueness and fast computation) but correct the drawbacks (contour based shape description and star-shape objects) and give rise to powerful invariant descriptors. We provide proof-of-principle examples illustrating the potential of this method for accurate object representation, an analysis of the descriptor classification power, and comparisons to other methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700