用户名: 密码: 验证码:
Impact-induced mantle dynamics on Mars
详细信息查看全文 | 推荐本文 |
摘要
At least 20 impact basins with diameters ranging from 1000 to 3380 km have been identified on Mars, with five exceeding 2500 km. The coincidental timing of the end of the sequence of impacts and the disappearance of the global magnetic field has led to investigations of impact heating crippling an early core dynamo. The rate of core cooling (and thus dynamo activity) is limited by that of the overlying mantle. Thus, the pre-existing thermal state of the mantle controls the extent to which a sequence of impacts may affect dynamo activity. Here, we examine the effects of the initial thermal structure of the core and mantle, and the location of an impact with respect to the pre-existing convective structure on the mantle dynamics and surface heat flux.

We find that the impacts that formed the five largest basins dominate the impact-driven effects on mantle dynamics. A single impact of this size can alter the entire flow field of the mantle. Such an impact promotes the formation of an upwelling beneath the impact site, resulting in long-lived single-plume convection. The interval between the largest impacts is shorter than the initial recovery time for a single impact. Hence, the change in convective pattern due to each impact sets up a long term change in the global heat flow. These long-term changes are cumulative, and multiple impacts have a synergistic effect.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700