用户名: 密码: 验证码:
Modeling extracellular electrical neural stimulation: From basic understanding to MEA-based applications
详细信息查看全文 | 推荐本文 |
摘要
Extracellular electrical stimulation of neural networks has been widely used empirically for decades with individual electrodes. Since recently, microtechnology provides advanced systems with high-density microelectrode arrays (MEAs). Taking the most of these devices for fundamental goals or developing neural prosthesis requires a good knowledge of the mechanisms underlying electrical stimulation. Here, we review modeling approaches used to determine (1) the electric potential field created by a stimulation and (2) the response of an excitable cell to an applied field. Computation of the potential field requires solving the Poisson equation. While this can be performed analytically in simple electrode-neuron configurations, numerical models are required for realistic geometries. In these models, special care must be taken to model the potential drop at the electrode/tissue interface using appropriate boundary conditions. The neural response to the field can then be calculated using compartmentalized cell models, by solving a cable equation, the source term of which (called activating function) is proportional to the second derivative of the extracellular field along the neural arborization. Analytical and numerical solutions to this equation are first presented. Then, we discuss the use of approximated solutions to intuitively predict the neuronal response: Either the 鈥渁ctivating function鈥?or the 鈥渕irror estimate鈥? depending on the pulse duration and the cell space constant. Finally, we address the design of optimal electrode configurations allowing the selective activation of neurons near each stimulation site. This can be achieved using either multipolar configurations, or the 鈥済round surface鈥?configuration, which can be easily integrated in high-density MEAs. Overall, models highlighting the mechanisms of electrical microstimulation and improving stimulating devices should help understanding the influence of extracellular fields on neural elements and developing optimized neural prostheses for rehabilitation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700