用户名: 密码: 验证码:
Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions
详细信息查看全文 | 推荐本文 |
摘要
In the present work, we report measurements of the effective thermal conductivity of dispersions of single-walled carbon nanotube (SWNT) suspensions in ethylene glycol. The SWNTs were synthesized using the alcohol catalytic chemical vapour deposition method. Resonant Raman spectroscopy was employed to estimate the diameter distribution of the SWNTs based on the frequencies of the radial breathing mode peaks. The nanofluid was prepared by dispersing the nanotubes using a bile salt as the surfactant. Nanotube loading of up to 0.2 vol%was used. Thermal conductivity measurements were performed by the transient hot-wire technique. Good agreement, within an uncertainty of 2%, was found for published thermal conductivities of the pure fluids. The enhancement of thermal conductivity was found to increase with respect to nanotube loading. The maximum enhancement in thermal conductivity was found to be 14.8%at 0.2 vol%loading. The experimental results were compared with literature results in similar dispersion medium. Experimental results were compared with the Hamilton-Crosser model, the Lu-Lin model, Nan鈥檚 effective medium theory and the Hashin-Shtrikman model. Effective medium theory seems to predict the thermal conductivity enhancement reasonably well compared to rest of the models. Networking of nanotubes to form a tri-dimensional structure was considered to be the reason for the thermal conductivity enhancement.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700