用户名: 密码: 验证码:
Ablation behavior of ZrB2–SiC ultra high temperature ceramics under simulated atmospheric re-entry conditions
详细信息查看全文 | 推荐本文 |
摘要
ZrB2–20vol%SiC ultra high temperature ceramic (UHTC) was prepared by hot-pressing. Ablation tests of the flat-face models were conducted under ground simulated atmospheric re-entry conditions using arc-jet testing with heat fluxes of 1.7 MW/m2 and 5.4 MW/m2 under subsonic conditions, respectively. There was little weight or configuration change after ablation at a heat flux of 1.7 MW/m2. However, ZrB2–SiC composite underwent severe ablation and whose surface temperatures exceeded 2300 °C at a heat flux of 5.4 MW/m2. Sharp-shape leading edge models were ablated under supersonic conditions with the stagnation pressure and Mach number of 1.2 atm and 2.7 M, respectively, and sharp-shaped leading edge C/SiC models were also ablated under the same condition for comparison. ZrB2–SiC composite exhibited an excellent thermal-oxidative and configurational stability in the simulated re-entry environment compared with C/SiC material. Results indicate that ZrB2–SiC ultra high temperature ceramics are the potential candidates for leading edges. The temperature limit for UHTC is controlled by the softening and degradation of the formed oxide scale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700