用户名: 密码: 验证码:
Optoelectronic properties of hot-wire silicon layers deposited at 100 °C
详细信息查看全文 | 推荐本文 |
摘要
Hot-wire chemical vapor deposition is employed for the deposition of amorphous and microcrystalline silicon layers at substrate temperature kept below 100 °C with the aid of active cooling of the substrate holder. The hydrogen dilution is varied in order to investigate films at the amorphous-to-microcrystalline transition. While the amorphous layers can be produced with a reasonably low defect density as deduced from subgap optical absorption spectra and a good photosensitivity, the microcrystalline layers are of a lesser quality, most probably due to a decrease of crystallinity during the film growth. In the amorphous growth regime, the Urbach energy values decrease with increasing hydrogen dilution, reaching a minimum of 67 meV just before the microcrystalline threshold. By varying the total gas pressure, the growth rate of the films is changed. The lowest deposition rate of this study (0.16 nm/s) produced the amorphous sample with the highest photoresponse (1 × 106).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700