用户名: 密码: 验证码:
Spin states and hyperfine interactions of iron incorporated in MgSiO3 post-perovskite
详细信息查看全文 | 推荐本文 |
摘要
Using density functional theory + Hubbard U (DFT + U) calculations, we investigate the spin states and nuclear hyperfine interactions of iron incorporated in magnesium silicate (MgSiO3) post-perovskite (Ppv), a major mineral phase in the Earth's D鈥?layer, where the pressure ranges from ~ 120 to 135 GPa. In this pressure range, ferrous iron (Fe2 +) substituting for magnesium at the dodecahedral (A) site remains in the high-spin (HS) state; intermediate-spin (IS) and low-spin (LS) states are highly unfavorable. As to ferric iron (Fe3 +), which substitutes magnesium at the A site and silicon at the octahedral (B) site to form (Mg,Fe)(Si,Fe)O3 Ppv, we find the combination of HS Fe3 + at the A site and LS Fe3 + at the B site the most favorable. Neither A-site nor B-site Fe3 + undergoes a spin-state crossover in the D鈥?pressure range. The computed iron quadrupole splittings are consistent with those observed in M枚ssbauer spectra. The effects of Fe2 + and Fe3 + on the equation of state of Ppv are found nearly identical, expanding the unit cell volume while barely affecting the bulk modulus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700