用户名: 密码: 验证码:
Protective effects of XBP1 against oxygen and glucose deprivation/reoxygenation injury in rat primary hippocampal neurons
详细信息查看全文 | 推荐本文 |
摘要
The accumulation of misfolded and unfolded proteins in the endoplasmic reticulum (ER) induces ER stress, activating the unfolded protein response (UPR). One of the effectors of the UPR is XBP1, a critical transcriptional factor for genes responsible for cell survival. ER stress is also known to play a vital role in mediating ischemic reperfusion damage in the brain. In this study, we investigated the role of XBP1 in rat primary hippocampal neurons subjected to oxygen and glucose deprivation followed by reoxygenation (OGD/R) stress, an in vitro model of ischemia/reperfusion (I/R) injury. Primary neurons subjected to OGD had increased levels of spliced XBP1 (XBP1s) mRNA. Interestingly, the level of XBP1s decreased during the initial reoxygenation stress period. The combination of OGD and the subsequent 20-h reoxygenation stress period significantly increased the apoptotic death of primary cells. Overexpression of XBP1s suppressed cell death induced by OGD/R stress. These results suggest that suppression of XBP1 activation accelerates neuronal cell death after I/R and that activation of the XBP1 pathway may provide a therapeutic approach for the treatment of cerebral I/R injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700