用户名: 密码: 验证码:
Appearance-based odometry and mapping with feature descriptors for underwater robots
详细信息
下载全文
推荐本文 |
摘要
The use of Autonomous Underwater Vehicles (AUVs) for underwater tasks is a promising robotic field. These robots can carry visual inspection cameras. Besides serving the activities of inspection and mapping, the captured images can also be used to aid navigation and localization of the robots. Visual odometry is the process of determining the position and orientation of a robot by analyzing the associated camera images. It has been used in a wide variety of non-standard locomotion robotic methods. In this context, this paper proposes an approach to visual odometry and mapping of underwater vehicles. Supposing the use of inspection cameras, this proposal is composed of two stages: i) the use of computer vision for visual odometry, extracting landmarks in underwater image sequences and ii) the development of topological maps for localization and navigation. The integration of such systems will allow visual odometry, localization and mapping of the environment. A set of tests with real robots was accomplished, regarding online and performance issues. The results reveals an accuracy and robust approach to several underwater conditions, as illumination and noise, leading to a promissory and original visual odometry and mapping technique.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700