用户名: 密码: 验证码:
选区激光熔化TiAl合金裂纹产生机制及工艺优化试验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Crack Initiation Mechanism and Experiment Study of Process Optimization of TiAl Alloy Formed by Selective Laser Melting
  • 作者:石文天 ; 王朋 ; 刘玉德 ; 石学智
  • 英文作者:Shi Wentian;Wang Peng;Liu Yude;Shi Xuezhi;School of Materials Science and Mechanical Engineering,Beijing Technology and Business University;School of Naval Architecture and Mechanical-Electrical Engineering,Zhejiang Ocean University;
  • 关键词:选区激光熔化技术 ; TiAl合金 ; 裂纹 ; 预烧结 ; 重熔
  • 英文关键词:selective laser melting;;TiAl alloy;;cracks;;pre-sintering;;remelting
  • 中文刊名:ZXJS
  • 英文刊名:Chinese Journal of Rare Metals
  • 机构:北京工商大学材料与机械工程学院;浙江海洋大学船舶与机电工程学院;
  • 出版日期:2019-01-28 07:00
  • 出版单位:稀有金属
  • 年:2019
  • 期:v.43;No.277
  • 基金:国家自然科学基金项目(51505006);; 2017学位与研究生教育项目(11000101010)资助
  • 语种:中文;
  • 页:ZXJS201904003
  • 页数:10
  • CN:04
  • ISSN:11-2111/TF
  • 分类号:16-25
摘要
TiAl合金具有优良的整体性能而获得广泛应用,但传统加工工艺容易出现缺陷,制约了该材料的进一步应用,采用增材制造技术即选区激光熔化(SLM)技术成形TiAl合金,分析总结了裂纹产生的机制,即温度梯度和残余应力导致了裂纹的出现,并研究了减少裂纹出现的工艺方法。首先总结了TiAl合金的发展及成形现状,针对SLM技术成形TiAl合金过程中裂纹产生的原因,采用不同温度的基板预热、预烧结、重熔等辅助工艺及其组合研究了成形中各种工艺过程对裂纹抑制的效果,进行了单熔道和块体的3D打印实验研究。实验结果表明:不使用任何辅助工艺的效果最差,单独采用一种优化工艺方案,基板预热改善效果最好,预烧结和重熔次之;组合工艺中,采用基板预热辅助预烧结或重熔工艺的效果有利于裂纹的消除,其中最优的工艺组合为基板预热200℃与预烧结工艺,预热使残余应力减少,预烧结降低了温度梯度,工艺组合的综合作用延缓了裂纹的出现,取得了最好的截面质量。
        TiAl alloy was widely used because of its excellent overall properties. However, the traditional processing technology was prone to defects, so the further application of TiAl alloy was restricted. As an advanced technology, selective laser melting(SLM) was used to form TiAl alloy. Firstly, the development and forming technology of TiAl alloys were summarized. The crack initiation mechanism such as the temperature gradient and residual stress was studied in the process of forming TiAl alloys by SLM and the technology of how to lease the crack was also proposed and used in the experiment. Then the effects of various forming processes on crack suppression were studied by using auxiliary processes such as substrate preheating, pre-sintering, remelting and combination technology. The experiment of single melting channel and block was studied and the results showed that the effect without any auxiliary process was the worst, the best technology was the preheating on the substrate, and followed by pre-sintering. The best combination technology was pre-sintering process and substrate preheating at 200 ℃ although the effect of auxiliary pre-sintering or remelting process was beneficial to the elimination of cracks, and the combination of pre-sintering process and substrate preheating at 200 ℃ obviously delayed the occurrence of cracks because the residual stress was reduced by substrate preheating, and the temperature gradient was reduced by pre sintering.
引文
[1] Guo J J,Liu Y,Su Y Q,Ding H S.Skull formation and change during ISM process of Ti-15-3 alloy [J].Transactions of Nonferrous Metals Society of China,2000,(1):14.
    [2] Zhang W J,Liu Z C,Chen G L,Kim Y W.Dislocation structure in a Ti-45 at.% Al-10 at.% Nb alloy deformed at room temperature [J].Philosophical Magazine A,1999,79(5):1073.
    [3] Li S J,Wang Y L,Lin J P,Lin Z,Chen G L.Preparation technology of high NbTiAl alloy [J].Journal of Aeronautical Materials,2004,(1):12.(李书江,王艳丽,林均品,林志,陈国良.高铌钛铝合金的制备工艺 [J].航空材料学报,2004,(1):12.)
    [4] Zhao Z G,Bo L,Li L,Huang J Y.Status and progress of selective laser melting forming technology [J].Aeronautical Manufacturing Technology,2014,(19):46.(赵志国,柏林,李黎,黄建云.激光选区熔化成形技术的发展现状及研究进展 [J].航空制造技术,2014,(19):46.)
    [5] Baldev R,Kamachi M U.Materials development and corrosion problems in nuclear fuel reprocessing plan [J].Progress in Nuclear Energy,2006,48(4):283.
    [6] Boyer R R.An overview on the use of titanium in the aerospace industry [J].Materials Science and Engineering A,1996,312(1/2):103.
    [7] Pu Y S,Wang B Q,Zhang L G.Metal 3D printing technology [J].Surface Technology,2018,47(3):78.(蒲以松,王宝奇,张连贵.金属3D打印技术的研究 [J].表面技术,2018,47(3):78.)
    [8] Song B,Dong S J,Liao H L,Coddet C.Morphology evolution mechanism of single tracks of FeAl intermetallics in selective laser melting [J].Materials Research Innovations,2013,16(5):321.
    [9] Smurov I,Yadroitsava I,Yadroitsev I,Bertrand P.Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks [J].Rapid Prototyping Journal,2012,18(3):201.
    [10] Butomo D G,Firkovich I A.The causes of the formation of cracks in the MNA-13-3 copper-base alloy [J].Metal Science & Heat Treatment,1966,8(6):481.
    [11] Shi X Z.Investigation on the Processing and Mechanism of TiAl-Based Microlaminate Composite by Selective Laser Melting [D].Beijing:Beijing Institute of Technology,2017.80.(石学智.TiAl基微叠层复合材料激光选区熔化成形机理及制备工艺研究 [D].北京:北京理工大学,2017.80.)
    [12] Wang X J.Process Parameters and Properties of Selective Laser Melting Al-Si Alloys [D].Beijing:China University of Geosciences,Beijing,2014.111.(王小军.Al-Si合金的选择性激光熔化工艺参数与性能研究 [D].北京:中国地质大学(北京),2014.111.)
    [13] Li W,Liu J,Wen S,Wei Q,Yan C,Shi Y.Crystal orientation,crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting [J].Materials Characterization,2016,113:125.
    [14] Gussone J,Hagedorn Y C,Gherekhloo H,Kasperovich G,Merzouk T,Hausmann J.Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures [J].Intermetallics,2015,66:133.
    [15] Kempen K,Thijs L,Vrancken B,Buls S,Humbeeck J Van,Kruth J P.Lowering thermal gradients in selective laser melting by pre-heating the baseplate [A].Solid Freeform Fabrication Symposium Proceedings [C].2013.24.
    [16] Bremen W M,Andrei D.Selective laser melting-A manufacturing technology for the future [J].Laser Technik Journal,2012,9:33.
    [17] Shang D G,Yao W X.A nonlinear damage cumulative model for uniaxial fatigue [J].International Journal of Fatigue,1999,21(2):187.
    [18] Zhang X D,Brice C,Mahaffey D W,Zhang H,Schwendner K,Evans D J.Characterization of laser-deposited TiAl alloys [J].Scripta Materialia,2001,44(10):2419.
    [19] Vilaro T,Rexerodt V K,Thomas M,Colin C,Bertrand Ph,Thivillon L,Abed S,Ji V.Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes [J].Advanced Materials Research,2010,89-91:586.
    [20] Fan X F,Zhou J,Qiu C J,He B,Ye J,Yuan B.Experimental study on surface characteristics of laser cladding layer regulated by high-frequency microforging [J].Journal of Thermal Spray Technology,2011,20(3):456.
    [21] Gussone J,Hagedorn Y C,Gherekhloo H,Kasperovich G,Merzouk T,Hausmann J.Microstructure of γ-titanium aluminide processed by selective laser melting at elevated temperatures [J].Intermetallics,2015,66:133.
    [22] Gussone J,Garces G,Haubrich J,Stark A,Hagedorn Y-C,Schell N,Requena G.Microstructure stability of γ-TiAl produced by selective laser melting [J].Scripta Materialia,2017,130:110.
    [23] Vilaro T,Koyyman-rexerodt V,Thomas M,Colin C,Bertrand P,Thivillon L,Abed S,Ji V,Aubry P,Peyre P,Malot T.Direct fabrication of a Ti-47Al-2Cr-2Nb alloy by selective laser melting and direct metal deposition processes [J].Advanced Materials Research,2010,89-91:586.
    [24] Loeber L,Biamino S,Ackelid U,Sabbadini S,Epicoco P,Fino P,Eckert J.Comparison of selective laser and electron beam melted titanium aluminides [A].Solid Freeform Fabrication Symposium [C].2011.547.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700