用户名: 密码: 验证码:
变形参数对2195 Al-Li合金动态再结晶的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy
  • 作者:李旭 ; 杨庆波 ; 樊祥泽 ; 呙永林 ; 林林 ; 张志清
  • 英文作者:LI Xu;YANG Qingbo;FAN Xiangze;GUO Yonglin;LIN Lin;ZHANG Zhiqing;College of Materials Science and Engineering, Chongqing University;Southwest Aluminum Group Co., Ltd.;Chongqing Xipeng Industrial Park;
  • 关键词:2195 ; Al-Li合金 ; 平面应变压缩 ; 变形参数 ; 动态再结晶
  • 英文关键词:2195 Al-Li alloy;;plane strain compression;;deformation parameters;;dynamic recrystallization
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:重庆大学材料科学与工程学院;西南铝业(集团)有限责任公司;重庆西彭产业工业园区;
  • 出版日期:2019-06-11
  • 出版单位:金属学报
  • 年:2019
  • 期:v.55
  • 基金:中央高校基本科研业务费专项资金项目No.106112017CDJQJ328840~~
  • 语种:中文;
  • 页:JSXB201906004
  • 页数:11
  • CN:06
  • ISSN:21-1139/TG
  • 分类号:29-39
摘要
在应变速率0.01~1 s~(-1)、变形温度350~500℃下,通过平面应变热压缩实验研究了2195 Al-Li合金不同热变形条件下的动态再结晶(DRX)临界条件,对动态再结晶机制进行了讨论,并通过EBSD和TEM等手段分析了变形参数对不同类型动态再结晶行为的影响。结果表明,动态再结晶临界应变(ε_c)随着Zener-Hollomon参数值(Z)的降低而降低;动态再结晶在低Z值的变形条件下进行得更充分,以不连续动态再结晶(DDRX)为主,仅发现有少量的连续动态再结晶(CDRX);连续和不连续动态再结晶都更容易在低的Z值下形成,而几何动态再结晶(GDRX)在Z值升高到一定程度才出现,并且随着Z值的进一步升高而增加,几何动态再结晶在一定程度上增加了晶粒数目,从而使动态再结晶分数略有升高。
        Al-Li alloys have attracted extensive attentions as promising structural materials in aerospace industries due to their excellent mechanical properties, and are usually formed through a variety of hot workings such as rolling and forging. Dynamic recrystallization(DRX) is considered as one of the key microstructure evolutions of Al alloys during hot working, and many works have been done concerning with DRX. However, the influence of deformation parameters on different types of DRX of 2195 Al-Li alloy is still unclear. In this work, hot plane strain compression tests were conducted at the strain rate range from 0.01 s~(-1) to 1 s~(-1) and the temperature range from 350 ℃ to 500 ℃ to investigate the critical condition of dynamic recrystallization of 2195 Al-Li alloy under different hot deformation conditions, DRX mechanisms were discussed, and the influence of deformation parameters on different types of DRX was revealed using EBSD and TEM. The results showed that the critical strain decreased with the decrease of Zener-Hollomon parameter(Z), DRX was more sufficient in lower Z value, and discontinuous dynamic recrystallization(DDRX) was primary type while only a little continuous dynamic recrystallization(CDRX)was found. Both CDRX and DDRX were promoted in lower Z value, geometric dynamic recrystallization(GDRX) only occurred in high Z value and increased with further increase of Z value, and the appearance of GDRX was accompanied by the increase of the number of DRX grains so that the DRX fraction slightly increased.
引文
[1] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56:862
    [2] Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys[J]. Chin. J. Nonferrous Met., 2011, 21:2337(郑子樵,李劲风,陈志国等.铝锂合金的合金化与微观组织演化[J].中国有色金属学报, 2011, 21:2337)
    [3] Jiang N, Li J F, Zheng Z Q, et al. Simulation on flow stress of multi-pass hot deformation of 2195 Al-Li alloy[J]. Rare Met. Mater. Eng., 2007, 36:949(蒋呐,李劲风,郑子樵等. 2195铝锂合金多道次热变形流变应力的模拟研究[J].稀有金属材料与工程, 2007, 36:949)
    [4] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems[J]. Acta Mater., 2003, 51:5775
    [5] Nayan N, Murty S V S N, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy[J]. J. Alloys Compd., 2017, 723:548
    [6] Zhu R H, Liu Q, Li J F, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression[J]. J. Alloys Compd., 2015, 650:75
    [7] Han D F, Zheng Z Q, Jiang N, et al. Flow stress of high-strength weldable 2195 aluminium-lithium alloy during hot compression deformation[J]. Chin. J. Nonferrous Met., 2004, 14:2090(韩冬峰,郑子樵,蒋呐等.高强可焊2195铝-锂合金热压缩变形的流变应力[J].中国有色金属学报, 2004, 14:2090)
    [8] Shen B, Deng L, Wang X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation[J]. Mater. Sci. Eng., 2015, A625:288
    [9] Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level[J]. Metall.Mater. Trans., 2009, 40A:1255
    [10] Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology[J]. Forg. Stamp. Technol., 2008,33(2):75(潘红波,唐荻,胡水平等.平面应变压缩技术的研究[J].锻压技术, 2008, 33(2):75)
    [11] Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B[J]. Mater. Sci. Eng., 2011,A529:300
    [12] Li H Y, Ou L, Zheng Z Q. Study on the anisotropy of 2195 Al-Li alloy[J]. J. Mater. Eng., 2005,(10):31(李红英,欧玲,郑子樵. 2195铝锂合金的各向异性研究[J].材料工程, 2005,(10):31))
    [13] Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications[J]. Mater.Sci. Eng., 1998, A257:100
    [14] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and postdynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Prog. Mater. Sci., 2014, 60:130
    [15] Sun Z C, Zheng L S, Yang H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation[J]. Mater. Charact., 2014, 90:71
    [16] Yang Q B, Wang X Z, Li X, et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression[J]. Mater. Charact., 2017, 131:500
    [17] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation[J]. Mater.Sci. Eng., 2016, A662:204
    [18] Yang X S, Chai L J, Huang W J, et al. EBSD analysis on restoration mechanism of as-extruded AA2099 Al-Li alloy after various thermomechanical processes[J]. Mater. Chem. Phys., 2017,191:99
    [19] Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior[J]. Chin. J. Nonferrous Met., 2016, 26:365(杨胜利,沈健,闫晓东等.基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制[J].中国有色金属学报, 2016,26:365)
    [20] Chen X H, Chen K H, Dong P X, et al. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation[J]. Chin. J. Nonferrous Met., 2013, 23:44(陈学海,陈康华,董朋轩等. 7085铝合金的热变形组织演变及动态再结晶模型[J].中国有色金属学报, 2013, 23:44)
    [21] Xiang S, Liu D Y, Zhu R H, et al. Hot deformation behavior and microstructure evolution of 1460 Al-Li alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25:3855
    [22] Yin H, Li H Y, Su X J, et al. Processing maps and microstructural evolution of isothermal compressed Al-Cu-Li alloy[J]. Mater. Sci.Eng., 2013, A586:115
    [23] Huang K, LogéR E. A review of dynamic recrystallization phenomena in metallic materials[J]. Mater. Des., 2016, 111:548
    [24] Kumar S, Pink E. Serrated flow in aluminium alloys containing lithium[J]. Acta Mater., 1997, 45:5295
    [25] Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ Int., 2007, 43:684
    [26] Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization[J]. Acta Mater., 2009, 57:2748
    [27] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. J. Appl. Phys., 1944, 15:22
    [28] Sellars C M, McTegart W J. On the mechanism of hot deformation[J]. Acta Metall., 1966, 14:1136
    [29] Li X, Fan X Z, Yang Q B, et al. Flow behavior and microstructure of 2195 Al-Li alloy during plane strain compression[J]. Chin. J.Nonferrous Met., 2018, 28:1980(李旭,樊祥泽,杨庆波等. 2195铝锂合金平面应变压缩的流变行为与微观组织[J].中国有色金属学报, 2018, 28:1980)
    [30] Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication[J]. Acta Metall. Sin., 2012, 48:1510(刘娟,李居强,崔振山等.新的单参数动态再结晶动力学建模及晶粒尺寸预测[J].金属学报, 2012, 48:1510)
    [31] Murty S V S N, Sarkar A, Narayanan P R, et al. Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219[J]. Mater. Sci. Eng., 2016, A677:41
    [32] Kapoor R, Shekhawat S K, Samajdar I. Flow localization in an Al-2.5Mg alloy after severe plastic deformation[J]. Mater. Sci. Eng.,2014, A611:114
    [33] Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium[J]. Mater.Sci. Eng., 2000, A283:274
    [34] Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization[J]. Mater. Sci. Eng., 2005, A410-411:152
    [35] Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn(AA5083)[J]. Mater. Sci.Eng., 1996, A205:23
    [36] Henshall G A, Kassner M E, McQueen H J. Dynamic restoration mechanisms in Al-5.8 at. pct Mg deformed to large strains in the solute drag regime[J]. Metall. Trans., 1992, 23A:881
    [37] Kassner M E. Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamicrecrystallization concept[J]. Metall. Trans., 1989, 20A:2182
    [38] Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation[J]. Acta Mater., 2009, 57:5218
    [39] McQueen H J. Development of dynamic recrystallization theory[J]. Mater. Sci. Eng., 2004, A387-389:203
    [40] Gourdet S, Montheillet F. A model of continuous dynamic recrystallization[J]. Acta Mater., 2003, 51:2685
    [41] Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys:II—Annealing behaviour[J]. Acta Mater., 2004, 52:3251
    [42] Liu W Y, Zhao H, Li D, et al. Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature[J]. Mater. Sci. Eng., 2015, A596:176
    [43] Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy[J]. Mater. Sci. Eng., 2012, A542:79
    [44] Yan J, Pan Q L, Li B, et al. Research on the hot deformation behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr alloy using processing map[J]. J. Alloys Compd., 2015, 632:549
    [45] Mao B P, Yan X D, Shen J. Precipitation behavior of T1 phase during thermo-mechanical treatment of 2197 Al-Li alloy[J]. Chin. J.Nonferrous Met., 2015, 25:2366(毛柏平,闫晓东,沈健. 2197铝锂合金形变热处理中T1相的析出行为[J].中国有色金属学报, 2015, 25:2366)
    [46] Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys:Particle-stimulated nucleation[J]. Acta Mater., 2009, 57:2739

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700