用户名: 密码: 验证码:
中频域大气压介质阻挡放电中放电模式及其演化的数值模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical study on discharge modes in atmospheric dielectric barrier discharges and their transition excited by the medium frequencies
  • 作者:张远涛 ; 刘雨
  • 英文作者:ZHANG YuanTao;LIU Yu;School of Electrical Engineering, Shandong University;
  • 关键词:介质阻挡放电 ; 中频域 ; Ω模式 ; 混合模式 ; 欧姆加热 ; 流体模拟
  • 英文关键词:dielectric barrier discharge;;medium frequency range;;Ω mode;;hybrid mode;;Ohmic heating;;fluid simulation
  • 中文刊名:JGXK
  • 英文刊名:Scientia Sinica(Physica,Mechanica & Astronomica)
  • 机构:山东大学电气工程学院;
  • 出版日期:2018-02-01
  • 出版单位:中国科学:物理学 力学 天文学
  • 年:2018
  • 期:v.48
  • 基金:国家自然科学基金(编号:11375107和11675095);; 山东大学基本科研业务费(编号:2017JC017)资助项目
  • 语种:中文;
  • 页:JGXK201802007
  • 页数:11
  • CN:02
  • ISSN:11-5848/N
  • 分类号:67-77
摘要
最近的实验研究表明,在300 kHz–3 MHz的中频域,大气压氦气介质阻挡放电存在两种放电模式,即Ω模式和混合模式.为了深入研究中频域的放电模式与低频域(25–100 kHz)辉光放电模式及高频域(5–15 MHz)α模式之间的关系,本文借助于一维流体模型,数值模拟了中频域放电的这两种放电模式,并与实验结果进行了比较.数值研究表明,在中频域Ω模式下,传导电流及功率相对较小,带电粒子主要产生在放电间隙的中部,密度较低,电子加热方式主要为放电区域中部的欧姆加热.而中频域的混合模式,既体现了低频域的辉光放电模式的特点,比如阴极附近有很高的离子密度,电子产生及欧姆加热的区域均在鞘层内部,同时也体现了高频域的α模式的特点,比如在放电间隙中部有密度很高的等离子体区,这些计算结果均与实验观测定性一致.同时,进一步在固定电压的条件下研究了放电模式随频率的变化,指出中频域的混合模式实际是低频域的辉光放电模式与高频域的α模式之间的过渡阶段,本研究将有助于深化人们对大气压气体放电中放电模式之间转化的认识.
        The recent experimental observation shows that in the medium frequency range(300 kHz–3 MHz), there are two discharge modes, namely the Ω mode and hybrid mode. In this paper, a fluid model is explored to study the characteristics of these two discharge modes and their transitions. The numerical data indicate in the Ω mode the conduction current density is very low and the plasmas are mainly generated in the central region of gas gap, while the Ohmic heating takes place at the same region. For the hybrid mode, the ion density is very high in the sheath region, and the electrons are accelerated and produced in the sheath region, which are very similar to the characters of glow discharges in the low frequency region;meanwhile, a bulk plasma region with very high density is also formed in the center of gas gap, which is characterized by the α mode in the high frequency range. The mode transition among the glow discharge mode, hybrid mode and α mode is also investigated by varying the excitation frequency but with a fixed applied voltage. This simulation will deepen the understanding of mode transition in atmospheric discharges controlled by dielectric barriers for the whole excitation frequency range.
引文
1 Roth J R.Industrial plasma Engineering Principles(Vol.1).Bristol:Institute of Physics,1995
    2 Lu X P,Yan P,Ren C S,et al.Review on atmospheric pressure pulsed DC discharge(in Chinese).Sci Sin-Phys Mech Astron,2011,41:801-815[卢新培,严萍,任春生,等.大气压脉冲放电等离子体的研究现状与展望.中国科学:物理力学天文学,2011,41:801-815]
    3 Li X C,Di C,Jia P Y,et al.Atmospheric pressure uniform discharge with a fairly large volume between hollow-needle and plate electrodes(in Chinese).Sci Sin-Phys Mech Astron,2014,44:913-920[李雪辰,狄聪,贾鹏英,等.空心针-板电极中大体积的大气压均匀放电.中国科学:物理力学天文学,2014,44:913-920]
    4 Xiong Z L,Lu X P,Cao Y G.Plasma medicine(in Chinese).Sci Sin Tech,2011,41:1279-1298[熊紫兰,卢新培,曹颖光.等离子体医学.中国科学:技术科学,2011,41:1279-1298]
    5 Kogelschatz U.Filamentary,patterned,and diffuse barrier discharges.IEEE Trans Plasma Sci,2002,30:1400-1408
    6 Kanazawa S,Kogoma M,Moriwaki T,et al.Stable glow plasma at atmospheric pressure.J Phys D-Appl Phys,1988,21:838-840
    7 Massines F,Rabehi A,Decomps P,et al.Experimental and theoretical study of a glow discharge at atmospheric pressure controlled by dielectric barrier.J Appl Phys,1998,83:2950-2957
    8 Golubovskii Y B,Maiorov V A,Behnke J,et al.Modelling of the homogeneous barrier discharge in helium at atmospheric pressure.J Phys D-Appl Phys,2003,36:39-49
    9 Wang Y H,Wang D Z.Numerical simulation of dielectric-barrier-controlled glow discharge at atmospheric pressure(in Chinese).Acta Phys Sin,2003,52:1694-1770[王艳辉,王德真.介质阻挡均匀大气压辉光放电数值模拟研究.物理学报,2003,52:1694-1770]
    10 Zhang Y T,Wang D Z,Wang Y H.Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure(in Chinese).Acta Phys Sin,2005,54:4808-4815[张远涛,王德真,王艳辉.大气压介质阻挡丝状放电时空演化数值模拟.物理学报,2005,54:4808-4815]
    11 Zhang Y T,Wang D Z,Kong M G.Complex dynamic behaviors of nonequilibrium atmospheric dielectric-barrier discharges.J Appl Phys,2006,100:063304
    12 Kulikovsky A A.The structure of streamers in N2.I.Fast method of space-charge dominated plasma simulation.J Phys D-Appl Phys,1994,27:2556-2563
    13 Xu Y G,Zhu S,Tang J,et al.Characterization and mechanism studies of argon dielectric barrier discharge excited by a Gaussian voltage at atmospheric pressure(in Chinese).Sci Sin-Phys Mech Astron,2016,46:115201[徐永刚,朱莎,汤洁,等.高斯电压驱动大气压氩气介质阻挡放电的特性研究.中国科学:物理学力学天文学,2016,46:115201]
    14 Park J,Henins I,Herrmann H W,et al.Discharge phenomena of an atmospheric pressure radio-frequency capacitive plasma source.J Appl Phys,2001,89:20-28
    15 Yuan X H,Raja L L.Computational study of capacitively coupled high-pressure glow discharges in helium.IEEE Trans Plasma Sci,2003,31:495-503
    16 Balcon N,Hagelaar G,Boeuf J P.Numerical model of an argon atmospheric pressure RF discharge.IEEE Trans Plasma Sci,2008,36:2782-2787
    17 Liu D W,Iza F,Kong M G.Electron heating in radio-frequency capacitively coupled atmospheric-pressure plasmas.Appl Phys Lett,2008,93:261503
    18 Shi J J,Kong M G.Mechanisms of theαandγmodes in radio-frequency atmospheric glow discharges.J Appl Phys,2005,97:023306
    19 Yang X,Moravej M,Nowling G R,et al.Comparison of an atmospheric pressure,radio-frequency discharge operating in theαandγmodes.Plasma Sources Sci T,2005,14:314-320
    20 Zhang Y T,Li Q Q,Lou J,et al.The characteristics of atmospheric radio frequency discharges with frequency increasing at a constant power density.Appl Phys Lett,2010,97:141504
    21 Boisvert J S,Margot J,Massines F.Transitions between various diffuse discharge modes in atmospheric-pressure helium in the medium-frequency range.J Phys D-Appl Phys,2016,49:325201
    22 Boisvert J S,Margot J,Massines F.Transitions of an atmospheric-pressure diffuse dielectric barrier discharge in helium for frequencies increasing from kHz to MHz.Plasma Sources Sci T,2017,26:035004
    23 Chabert P,Braithwaite N.Physics of Radio-Frequency Plasmas.Cambridge:Cambridge University Press,2011
    24 Zhang Y T,Shang W L.The recovery of glow-plasma structure in atmospheric radio frequency microplasmas at very small gaps.Phys Plasmas,2011,18:110701
    25 Zhang Y T,Liu Y,Liu B.On peak current in atmospheric pulse-modulation microwave discharges by the PIC-MCC model.Plasma Sci Technol,2017,19:085402
    26 Hemke T,Eremin D,Mussenbrock T,et al.Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas.Plasma Sources Sci T,2013,22:015012,arXiv:1208.6519
    27 Eremin D,Hemke T,Mussenbrock T.Nonlocal behavior of the excitation rate in highly collisional RF discharges.Plasma Sources Sci T,2015,24:044004
    28 Killer C,Bandelow G,Matyash K,et al.Observation ofΩmode electron heating in dusty argon radio frequency discharges.Phys Plasmas,2013,20:083704
    29 Zhang Y T,Cui S Y.Frequency effects on the electron density andα-γmode transition in atmospheric radio frequency discharges.Phys Plasmas,2011,18:083509
    30 Levko D,Raja L L.Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarges.J Appl Phys,2016,119:163303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700