用户名: 密码: 验证码:
大气压空气介质阻挡放电的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation of Atmospheric Air Dielectric Barrier Discharge
  • 作者:陈紫蒙 ; 马天鹏 ; 赵琼 ; 钟方川
  • 英文作者:CHEN Zimeng;MA Tianpeng;ZHAO Qiong;ZHONG Fangchuan;College of Science,Donghua University;
  • 关键词:介质阻挡放电 ; 等离子体 ; 大气压 ; 数值模拟
  • 英文关键词:dielectric barrier discharge;;plasma;;atmospheric pressure;;numerical simulation
  • 中文刊名:DHDZ
  • 英文刊名:Journal of Donghua University(Natural Science)
  • 机构:东华大学理学院;
  • 出版日期:2018-07-03 17:35
  • 出版单位:东华大学学报(自然科学版)
  • 年:2018
  • 期:v.44
  • 语种:中文;
  • 页:DHDZ201803024
  • 页数:10
  • CN:03
  • ISSN:31-1865/N
  • 分类号:148-157
摘要
常压介质阻挡放电(DBD)是等离子灭菌和废气处理应用中形成等离子体的主要方法。为了理解空气放电产生等离子体的基本过程,建立了包含20种成分和75种化学反应过程的多组分自洽一维流体模型。通过对同轴圆柱介质阻挡放电进行数值模拟,研究频率为10 kHz、峰值电压为20 kV的正弦电压驱动的常压空气介质阻挡放电的基本特性。结果表明:在一个正弦周期内将有两次不对称的电流峰;电流峰期间电子、电场与空间电荷之间以流注放电的形式变化;等离子体在正负电流期间的电子密度和电子温度分别可达(1~3)×10~(19)/m3和7~9 eV;放电过程中主要活性粒子为N、O、O_2(a~1△_g),主要的带电粒子为电子、O~+_4、O~-_2与O~-。
        Dielectric barrier discharge(DBD) under atmospheric pressure is a main type of plasma generation method for applications of sterilization and exhaust treatment. In order to understand the generated process of plasma by air discharge,we established a self-consistent one-dimensional fluid model with 20 components and 75 chemical reactions for numerical simulation of the coaxial cylindrical DBD.Then the basic characteristics of DBD were studied under atmospheric pressure driven by 10 kHz sinusoidal with peak voltage of 20 kV. The results show that there are two asymmetric current peaks in one voltage cycle. During the current peaks, the electrons, electric field and space charge changes in the form of steamer discharge; electron density and electron temperature of the plasma are up to(1-3) X10~(19)/m~3 and 7-9 eV respectively. The main active particles in the discharge process are N, O and O_2(a~1△_g) and the main charge particles in the discharge process are electron, O~-_4, O~-_2 and O~-.
引文
[1]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11.
    [2]STOFFELS E,FLIKWEERT A J,STOFFELS W W,et al.Plasma needle:A non-destructive atmospheric plasma source for fine surface treatment of(bio)materials[J].Plasma Sources Science&Technology,2002,11(4):383-388.
    [3]王晓静,张晓星,孙才新,等.大气压介质阻挡放电对多壁碳纳米管表面改性及其气敏特性[J].高电压技术,2012,38(1):223-228.
    [4]柳晶晶.大气压下He和N_2辉光放电等离子体对生物用薄膜表面改性的研究[J].高电压技术,2012,38(5):1106-1113.
    [5]PARK J B,KYUNG S J,YEOM G Y.Plasma etching of SiO_2using remote-type pin-to-plate dielectric barrier discharge[J].Journal of Applied Physics,2008,104(8).
    [6]ONO R,ODA T.Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy[J].Journal of Applied Physics.2003.93(10):5876-5882.
    [7]SUNKA P.Pulse electrical discharges in water and their applications[J].Physics of Plasmas,2001.8(5):2587-2594.
    [8]李善评,崔江杰,姜艳艳,等.利用低温等离子体降解烯啶虫胺农药废水的研究[J].高电压技术,2011,37(10):2517-2522.
    [9]侯世英,曾鹏,刘坤,等.单介质与双介质结构介质阻挡放电水处理性能的比较[J].高电压技术,2012,38(7):1562-1567.
    [10]CHAE J O.Non-thermal plasma for diesel exhaust treatment[J].Journal of Electrostatics,2003,57(3/4):251-262.
    [11]GRAVES D B,JENSEN K F.A continuum model of DC and RF discharges[J].IEEE Transactions on Plasma Science,1986,14(2):78-91.
    [12]SURZHIKOV S T,SHANG J S.Two-component plasma model for two-dimensional glow discharge in magnetic field[J].Journal of Computational Physics,2004,199(2):437-464.
    [13]HAGELAAR G J M,PITCHFORD L C.Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J].Plasma Sources Science&Technology,2005,14(4):722-733.
    [14]EICHWALD O,GUNTORO N A,YOUSFI M,et al.Chemical kinetics with electrical and gas dynamics modelization for NO_x removal in an air corona discharge[J].Journal of Physics D-Applied Physics,2002,35(5):439-450.
    [15]NELSON D,BENHENNI M,EICHWALD O,et al.Ion swarm data for electrical dischargemodeling in air and flue gas mixtures[J].Journal of Applied Physics,2003,94(1):96-103.
    [16]BEKSTEIN A,BENHENNI M,YOUSFI M,et al.Ion swarm data of N in N_2,O_2 and dry air for streamer dynamics simulation[J].European Physical Journal-Applied Physics.2008,42(1):33-40.
    [17]VIEHLAND L A,MASON E A.Transport properties of gaseous-ions over a wide energy-range.4[J].Atomic Data and Nuclear Data Tables,1995,60(1):37-95.
    [18]LIU X H,HE W,YANG F,et al.Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure[J].Chinese Physics B,2012,21(7).
    [19]MAHADEVAN S,RAJA L L.Simulations of direct-current air glow discharge at pressures~1 Torr:Discharge model validation[J].Journal of Applied Physics,2010,107(9):093304.
    [20]KOSSYI I A,KOSTINSKY A,MATVEYEV A A,et al.Kinetic scheme of the non-equilibrium dischange in nitrogenoxygen mixtures[J].Plasma Sources Science&Technology,1992,1(3):207-200.
    [21]KOSSYI I A,KOSTINSKY A Y,MATVEYEV A A,et al.Kinetic scheme of the non-equilibrium discharge in nitrogenoxygen mixtures[J].Plasma Sources Science&Technology,1992,1(3):207-220.
    [22]LAWTON S A,PHELPS A V.Excitation of the b~1Σstate of O_2 by low energy electrons[J].Journal of Chemical Physics.1978,69(3):1055-1068.
    [23]PHELPS A V,PITCHFORD L C.Anisotropic Scattering of Electrons by N2 and Its Effect on Electron-Transport[J].Physical Review A,1985,31(5):2932-2949.
    [24]ITIKAWA Y.Cross sections for electron collisions with nitrogen molecules[J].Journal of Physical and Chemical Reference Data,2006,35(1):31-53.
    [25]王艳辉,王德真.介质阻挡均匀大气压氮气放电特性研究[J].物理学报,2006,55(11):5923-5929.
    [26]MORROW R,LOWKE J J.Streamer propagation in air[J].Journal of Physics D-Applied Physics,1997,30(4):614-627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700