用户名: 密码: 验证码:
大气压脉冲介质阻挡放电长脉宽效应研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Long Pulsewidth Effects of the Pulsed Dielectric Barrier Discharge at Atmospheric Pressure
  • 作者:单春虹 ; 谭震宇 ; 潘光胜 ; 王晓龙 ; 潘杰
  • 英文作者:SHAN Chunhong;TAN Zhenyu;PAN Guangsheng;WANG Xiaolong;PAN Jie;State Grid Liaoning Electric Power Supply Co.,Ltd.,Dalian Electric Power Supply Company;Shandong University ,Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment;
  • 关键词:脉冲介质阻挡放电 ; 氩气 ; 脉冲宽度 ; 一维流体模型
  • 英文关键词:pulsed dielectric barrier discharge;;argon gas;;pulsewidth;;1-D fluid model
  • 中文刊名:GYDQ
  • 英文刊名:High Voltage Apparatus
  • 机构:国网辽宁省电力有限公司大连供电公司;山东大学电气工程学院山东省特高压输变电技术与装备重点实验室;
  • 出版日期:2019-03-16
  • 出版单位:高压电器
  • 年:2019
  • 期:v.55;No.360
  • 基金:山东大学基本科研业务费专项资金资助(2016JC016)~~
  • 语种:中文;
  • 页:GYDQ201903018
  • 页数:8
  • CN:03
  • ISSN:61-1127/TM
  • 分类号:121-127+133
摘要
大气压脉冲介质阻挡放电已得到广泛应用,它的机理和放电特征一直是人们关注的课题。文中对长脉宽脉冲电压作用下氩气放电等离子体进行了模拟研究,以给出这一放电所具有的特征的理论估计。模拟使用了一维流体模型,并对边界条件作了较严格的理论处理,这一处理使得在不同脉宽下计算的放电电流与实验符合得更好。应用建立的流体模型,分别对长脉宽和相应的短脉宽下的放电电流峰值、各粒子密度的空间分布、电场强度的轴向分布等作了计算和比较,对各态氩粒子的产生反应路径及其贡献进行了分析。文中研究表明:长脉宽下的计算结果与相应的短脉宽的结果呈现交换对称的特征;无论是长脉宽还是相应的短脉宽,放电模式均为典型的大气压辉光放电;改变脉宽对各态氩粒子反应路径的贡献影响较小。
        Atmospheric-pressure pulsed dielectric barrier discharges have been widely applied,and its mechanisms and discharge characteristics are the topic of long(DBD)in argon gas at atmospheric pressure under long pulsewidths have been investigated numerically,so as to present the theoretical estimation for the characteristics of this discharge. A 1-D fluid model with an incorporation of the strict boundary conditions has been built for the present investigation. Using the built model,the discharge cur-rents calculated under different pulsewidths are in good agreement with the experiments. The discharge current den-sities and spatial distributions of the particle densities and electric field at long pulsewidths and at the correspond-ing short pulsewidths have been calculated and compared,the reaction pathways for the generation of argon parti-cles are presented,and the corresponding contributions have also been calculated. The present simulations show that in these two cases,i.e. long pulsewidths and the corresponding short pulsewidths,the calculated results are in exchange symmetry and the discharges are in the atmospheric-pressure glow discharge mode. In addition,the effects of pulsewidth on the reaction pathway contributions are very small.
引文
[1]KOGELSCHATZ U.Dielectric-barrier discharges:Their history,discharge physics,and industrial applications[J].Plasma Chemistry&Plasma Processing,2003,23(1):1-46.
    [2]陈思乐,许桂敏,穆海宝,等.低温等离子体处理柴油机尾气的研究进展[J].高压电器,2016,52(4):22-29.CHEN Sile,XU Guimin,MU Haibao,et al.Research progress in treatment of diesel engine exhaust by non-thermal plasmas[J].High Voltage Apparatus,2016,52(4):22-29.
    [3]王新新.介质阻挡放电及其应用[J].高电压技术,2009,35(1):1-11.WANG Xinxin.Dielectric barrier discharge and its applications[J].High Voltage Engineering,2009,35(1):1-11.
    [4]王钰恒,汤红卫,仲崇山.空气介质阻挡放电固氮的研究[J].高压电器,2015,51(6):81-85.WANG Yuheng,TANG Hongwei,ZHONG Chongshan.Study on air dielectric barrier discharge nitrogen fixation[J].High Voltage Apparatus,2015,51(6):81-85.
    [5]GHERARDI N,NAUDéN,SéGUR P.Recent advances in the understanding of homogeneous dielectric barrier discharges[J].European Physical Journal Applied Physics,2009,47(2):22805.
    [6]杨国清,张青,钟思,等.表面粗糙度对表面介质阻挡放电特性的影响研究[J].高压电器,2016,52(8):96-100.YANG Guoqing,ZHANG Qing,ZHONG Si,et al.Effect of surface roughness on characteristics of surface dielectric barrier discharge[J].High Voltage Apparatus,52(8):96-100.
    [7]张欣伟,李安帮,杨国清,等.常压正弦激励射流等离子体的光谱特性研究[J].高压电器,2013,49(11):25-30.ZHANG Xinwei,LI Anbang,YANG Guoqing,et al.Spectral characteristics of sinusoidal excitation plasma jet produced in atmospheric air[J].High Voltage Apparatus,2013,49(11):25-30.
    [8]LIU D X,BRUGGEMAN P,IZA F,et al.Global model of low-temperature atmospheric-pressure He+H2O plasmas[J].Plasma Sources Science and Technology,2010,19(2):025018.
    [9]王艳辉,王德真.大气压下多脉冲均匀介质阻挡放电的研究[J].物理学报,2005,54(3):1295-1300.WANG Yanhui,WANG Dezhen.Study on homogeneous multiple-pulse barrier discharge at atmospheric pressure[J].Acta Physica Sinica,2005,54(3):1295-1300.
    [10]BOEUF J P,PITCHFORD L C.Two-dimensional model of a capacitively coupled rf discharge and comparisons with experiments in the gaseous electronics conference reference reactor[J].Physical Review E,1995,51(2):1376.
    [11]PAN J,TAN Z Y,WANG X L,et al.Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2[J].Plasma Sources Science and Technology,2014,23(6):065019.
    [12]NIKANDROV D S,TSENDIN L D,KOLOBOV V I,et al.Theory of pulsed breakdown of dense gases and optimization of the voltage waveform[J].IEEE Transactions on Plasma Science,2008,36(1):131-139.
    [13]HAGELAAR G J M,DE HOOG F J,KROESEN G M W.(121)115Boundary conditions in fluid models of gas discharges[J].Physical Review E,2000,62(1):1452-1454.
    [14]HODER T,H?FT H,KETTLITZ M,et al.Barrier discharges driven by sub-microsecond pulses at atmospheric pressure:Breakdown manipulation by pulse width[J].Physics of Plasmas,2012,19(7):543-555.
    [15]NISHIDA Y,CHIANG H C,CHEN T C,et al.Hydrogen production from hydrocarbons using plasma:Effect of discharge pulsewidth on decomposition[J].IEEE Transactions on Plasma Science,2015,43(10):1-1.
    [16]LU X,XIONG Q,XIONG Z,et al.Effect of nano-to millisecond pulse on dielectric barrier discharges[J].IEEE Transactions on Plasma Science,2009,37(5):647-652.
    [17]SHERSHUNOVA E A,MALASHIN M,MOSHKUNOV S,et al.Diffuse DBD in atmospheric air at different applied pulse widths[J].Acta Polytechnica,2015,55(1):59-63.
    [18]UCHIDA G,TAKENAKA K,SETSUHARA Y.Influence of voltage pulse width on the discharge characteristics in an atmospheric dielectricbarrier-discharge plasma jet[J].Japanese Journal of Applied Physics,2016(55):01AH03.
    [19]LIU K,HU Q,QIU J,et al.Dielectric barrier discharge at nanosecond high voltage pulses[C]//International Conference on Properties and Applications of Dielectric Materials.[S.l.],IEEE,2006:418-422.
    [20]CHEN G,RAJA L L.Fluid modeling of electron heating in low-pressure,high-frequency capacitively coupled plasma discharge[J].Journal of Applied Physics,2004,96(11):6073-6081.
    [21]BOEUF J P,PITCHFORD L C.Pseudospark discharges via computer simulation[J].IEEE Transactions on Plasma Science,1991,19(2):286-296.
    [22]LIU L,MIHAILOVA D B,VAN DIJK J,et al.Efficient simulation of drift-diffusive discharges:Application of the“complete flux scheme”[J].Plasma Sources Science and Technology,2014,23(1):015023.
    [23]姚聪伟,常正实,张冠军,等.大气压氩气介质阻挡放电等离子体特性变化的一维仿真[J].高电压技术,2015,41(6):2084-2092.YAO Congwei,CHANG Zhengshi,ZHANG Guanjun,et al.One-dimensional simulation of evolution characteristics of dielectric barrier discharge in atmospheric pressure argon[J].High Voltage Engineering,2015,41(6):2084-2092.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700