用户名: 密码: 验证码:
不同参数对同轴布喇格结构频率响应的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of different parameters on frequency response of the coaxial Bragg structure
  • 作者:丁学用 ; 苏红瑞 ; 王连胜
  • 英文作者:DING Xue-yong;SU Hong-rui;WANG Lian-sheng;The Polytechnic Institute of San Ya University;
  • 关键词:同轴布喇格结构参数 ; 低频单模 ; 高频耦合模式 ; 频率响应
  • 英文关键词:the parameters of coaxial Bragg structure;;low-frequency single-mode;;high frequency coupling modes;;frequency response
  • 中文刊名:YNDZ
  • 英文刊名:Journal of Yunnan University(Natural Sciences Edition)
  • 机构:三亚学院理工学院;
  • 出版日期:2018-07-10
  • 出版单位:云南大学学报(自然科学版)
  • 年:2018
  • 期:v.40;No.196
  • 基金:海南省教育厅教改项目(Hnjg2015-61);; 海南省自然科学基金(20165200)
  • 语种:中文;
  • 页:YNDZ201804011
  • 页数:11
  • CN:04
  • ISSN:53-1045/N
  • 分类号:70-80
摘要
基于多模耦合理论,对影响低频(15 GHz)单模和高频(0.35 THz)耦合模式同轴布喇格结构频率响应特性的参数进行了比较研究.结果表明,初始相位、波纹周期、加窗技术、开槽深度、开槽形状、波纹壁的加坡度方式和坡度角以及结构长度等参数,对同轴布喇格结构频率响应特性都有影响.一般设置内外导体波纹相位差为180°,且内外导体波纹周期相同;加窗技术可很好地抑制残留边带;改变开槽深度、开槽形状、加坡度方式以及结构长度可以改变同轴布喇格结构的频带宽度和反射率,尤其对于高频耦合模式,其工作模式和竞争模式受参数影响的变化规律不同,根据这些特点可以按照实际需要选择合适的参数,提高模式的选择性,改善同轴布喇格结构的性能.
        Based on the coupling theory,numerical simulations are carried out for the influence of different parameters on frequency response of a coaxial Bragg structure with low frequency( 15 GHz) single-mode and high frequency( 0.35 THz) coupling modes.Results show that the initial phase,the ripple period,windowing-function technique,the sinusoidal ripple amplitude,the ripple shape,the mode of gradient and the gradient,and the length of a coaxial Bragg structure all evidently influence the frequency response of a coaxial Bragg structure.The inner and outer conductors of corrugated coaxial Bragg structure phase difference is set to 180°,the ripple period is the same,the window technique can well inhibit the residual side-lobes,and when we change the sinusoidal ripple amplitude,the ripple shape,the mode of gradient and the length of the structure can change the bandwidth and reflectivity of coaxial Bragg structure,especially for the high frequency coupling modes,the influence of different parameters on the working mode and competition mode is different. Therefore,different parameters can be properly chosen to improve the mode selectivity of coaxial Bragg structures and to improve the performance of coaxial Bragg structure.
引文
[1]BARROSO J J,LEITE NETO J P.Design of coaxial Bragg reflectors[J].IEEE Trans on Plasma Sci,2006,34(3):666-672.
    [2]GINZBUTG N S,PESKOV N YU,SERGEEV A S,et al.The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser[J].Phys Plasmas,2002,9(6):2 798-2 802.
    [3]KONOPLEV I V,MCGRANE P,CROSS A W,et al.Wave interference and band control in multiconductor one-dimensional Bragg structures[J].J Appl Phys,2005,97(7):073101.
    [4]GINZBURG N S,ZASLAVSKY V YU,MALKIN A M,et al.Application of modified bragg structures in high-power submillimeter cyclotron autoresonance masers[J].Radiophysics and Quantum Electronics,2017,59(12):1 017-1 025.
    [5]GINZBRG N S,ZASLAVSKII V YU,ZOTOVA I V,et al.Terahertz free-electron lasers with Bragg structures based on the coupling between traveling and quasicritical waves[J].Jetp Letters,2010,91(6):266-270.
    [6]KONOPLEV I V,MCGRAN P,PHELPS A D R,et al.Observation of photonic band-gap control in one-dimensional Bragg structures[J].Appl Phys Lett,2005,87(12):121104.
    [7]文光俊,李家胤,刘盛纲,等.同轴波纹波导的高频特性数值分析[J].电子与信息学报,1999,21(2):246-251.WEN G J,LI J Y,LIU S G,et al.Numerical analysis of high frequency characteristics of coaxial corrugated wall waveguide[J].Journal of Electronics and Information Technology,1999,21(2):246-251.
    [8]TAO J,YU X C,HU B,et al.Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J].Optics Letters,2014,39(2):271-274.
    [9]LAI Y X,ZHANG S C.Multiwave interaction formulation of a coaxial Bragg structure and its experimental verification[J].Phys.Plasmas,2007,14(11):113301.
    [10]CHEN X H,ZHANG S C.Suppression of residual sidelobes in a coaxial Bragg reflector[J].Int J Infrared Millimeter Waves.2008,29(6):552-557.
    [11]丁学用,张世昌,谢永超.具有坡度的同轴布喇格结构的频率响应[J].强激光与粒子束,2008,20(12):2 051-2 054.DING X Y,ZHANG S C,XIE Y C.Characteristics of frequency response in a coaxial Bragg structure with tapered ripples[J].High Power laser and Particle Beams,2008,20(12):2 051-2 054.
    [12]兰峰,杨梓强,史宗君.带有锥度结构的同轴开槽布拉格反射器研究[J].物理学报,2011,60:091101.LAN F,YANG Z Q,SHI Z J.Coaxial Bragg reflector with small tapered inner rode corrugated ripples and phase matching secting[J].Acta Physica Sinica,2011,60:091101.
    [13]赖颖昕,危喜临,王善进,等.波纹误差对同轴布拉格结构反射特性的影响[J].强激光与粒子束,2015,27(8):083003.LAI Y X,WEI X L,WANG S J,et al.Effect of random corrugation errors on reflection characteristics of coaxial Bragg structure with rectangular ripples[J].High Power Laser and Particle Beams,2015,27(8):083003.
    [14]DING X Y,LI H F,LYU Z S.Effect of ripple taper on band-gap overlap in a coaxial Bragg structure operating at terahertz frequency[J].Phys Plasmas,2012,19(9):092105.
    [15]丁学用,王连胜,吕振肃.双重正弦槽同轴布喇格结构特性的模拟研究[J].云南大学学报:自然科学报,2017,39(1):50-57.DING X Y,WANG L S,LYU Z S.On simulations of coaxial Bragg structure with double-sinusoidal ripples[J].Journal of Yunnan University:Natural Eciences Edition,2017,39(1):50-57.
    [16]DING X Y,ZHANG S C.Effectof ripple shape and taper on frequency response of reflectivity and transmission in a coaxial Bragg structure[J].J Appl Phys,2009,42(8):085104.
    [17]丁学用,王玲玲,吕振肃.混合型开槽同轴布喇格结构的比较研究[J].电波科学学报,2015,30(6):1 228-1 234.DING X Y,WANG L L,LYU Z S.Comparative study of coaxial Bragg structure with hybrid ripples shape[J].Chinese Journal of Radio Science,2015,30(6):1 228-1 234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700