用户名: 密码: 验证码:
现代土力学研究的新视野——宏微观土力学
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:New paradigm for modern soil mechanics: Geomechanics from micro to macro
  • 作者:蒋明镜
  • 英文作者:JIANG Ming-jing;Department of Civil Engineering,School of Civil Engineering,Tianjin University;State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University;Department of Geotechnical Engineering,College of Civil Engineering,Tongji University;
  • 关键词:宏微观土力学 ; 微观试验 ; 离散单元法 ; 宏微观关联 ; 本构模型 ; 疑难土 ; 三深工程
  • 英文关键词:geomechanics from micro to macro;;microscopic test;;distinct element method;;relation between micro and macro behavior;;constitutive model;;problematic soil;;engineering of three-deep-area
  • 中文刊名:YTGC
  • 英文刊名:Chinese Journal of Geotechnical Engineering
  • 机构:天津大学建筑工程学院土木工程系;天津大学水利工程仿真与安全国家重点实验室;同济大学土木工程学院地下建筑与工程系;
  • 出版日期:2019-02-15
  • 出版单位:岩土工程学报
  • 年:2019
  • 期:v.41;No.333
  • 基金:国家自然科学基金重大研究项目(51890911);国家自然科学基金重点研究项目(51639008)
  • 语种:中文;
  • 页:YTGC201902002
  • 页数:60
  • CN:02
  • ISSN:32-1124/TU
  • 分类号:6-65
摘要
随着岩土工程领域的不断拓展,特别是在深地、深海、深空工程("三深工程")方面需要面对更多复杂的岩土材料和环境条件。基于连续介质和唯象的常规土力学理论与方法在描述岩土材料的非连续性、大变形和破坏等复杂特性以及复杂环境影响上有许多缺陷。宏微观土力学力图从本质上探求岩土材料复杂宏观特性的微细观机理,建立其多尺度分析理论与方法,解决岩土力学与工程中的疑难与关键问题,从而帮助提高工程设计水平。本文回顾了宏微观土力学近40 a的发展历程,从宏微观土力学的研究方法、理论和应用等方面综述了国内外学者的主要研究成果,包括典型土体的微观特性、微观本构理论、宏微观关联、基于微观机制的宏观本构理论等。研究土体包括陆地上黏土、结构性砂土、黄土、深海能源土和太空土(月壤)。重点阐述了宏微观土力学的重要研究手段之一的离散单元法在模拟陆、海、空疑难岩土力学与工程中的应用与拓展,探讨了宏微观土力学研究所面临的各种挑战和重大机遇。通过系统介绍上述研究成果,勾勒了宏微观土力学的基本框架,以期推动该研究方向的加速发展。
        With the continuous advances in geotechnical engineering practice,especially in deep-underground,deep-sea and deep-space areas(engineering of three-deep-area),geo-engineers are faced with increasingly complex geomaterials and geotechnical environment.Based on the continuum mechanics and phenomenological methodologies,the conventional soil mechanics encounters many difficulties in describing the complicated behavior of soils,such as discontinuous response,large deformation and failure,and the impacts of complex environment.Geomechanics from micro to macro(GM3) starts from particle-scale characterization of soils and upscales to its macroscopic behavior.In this way,the microscopic mechanisms can be revealed to understand the complex behavior of problematic soils.Then the multi-scale theories and methodologies established can promisingly solve the key problems in geomechanics and geotechnical engineering and finally upgrade engineering design level.This paper first highlights the main development of GM3 in the past 40 years.The methodologies,theories,applications of GM3 developed by the worldwide researchers are then introduced,including microscopic behavior of typical soils,microscopic constitutive models,micro-macro bridging and macroscopic constitutive models based on the micro-mechanisms.Various soils are discussed,including clays,structured sands and loesses on the earth,deep-sea methane hydrate bearing sediments,and planetary soils(lunar regolith).The focus is put on the applications and extensions of distinct element method(DEM) in the simulations of problematic geomaterial mechanics and geotechnical engineering on and off shore and in the deep-space.Finally,serveral key challenges and opportunities in GM3 are discussed.By systematically reviewing the above achievements,the paper outlines GM3 framework in order to accelerate the development of research in this area.
引文
[1]沈珠江.理论土力学[M].北京:中国水利水电出版社,2000.(SHEN Zhu-jiang.Theoretical soil mechanics[M].Beijing:China Water and Power Press,2000.(in Chinese))
    [2]沈珠江.现代土力学的基本问题[J].力学与实践,1998,20(6):1-6.(SHEN Zhu-jiang.Fundamental problems in the modern soil mechanics[J].Mechanics in Engineering,1998,20(6):1-6.(in Chinese))
    [3]ROSCOE K H,SCHOFIELD A N,THURAIRAJAH A.Yielding of clays in states wetter than critical[J].Géotechnique,1963,13(3):211-240.
    [4]DUNCAN J M,CHANG C Y.Nonlinear analysis of stress and strain in soils[J].Journal of Soil Mechanics and Foundations Division,1970,96(SM5):1629-1653.
    [5]MITCHELL J K.Fundamentals of soil behaviour[M].New York:Wiley,1976.
    [6]CUNDALL P A,STRACK O D L.A discrete numerical model for granular assemblies[J].Géotechnique,1979,29(1):47-65.
    [7]CHANG C S,MA L.A micromechanical-based micropolar theory for deformation of granular solids[J].International Journal of Solids and Structures,1991,28(1):67-86.
    [8]BARDET J P.Observations on the effects of particle rotations on the failure of idealized granular materials[J].Mechanics of Materials,1994,18(2):159-182.
    [9]THORNTON C.Numerical simulations of deviatoric shear deformation of granular media[J].Géotechnique,2000,50(1):43-53.
    [10]JIANG M J,HARRIS D,YU H S.Kinematic models for non-coaxial granular materials:Part I theory[J].International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(7):643-661.
    [11]JIANG M J,LEROUEIL S,KONRAD J M.Insight into shear strength functions of unsaturated granulates by DEManalyses[J].Computers and Geotechnics,2004,31(6):473-489.
    [12]JIANG M J,YU H S,HARRIS D.A novel discrete model for granular material incorporating rolling resistance[J].Computers and Geotechnics,2005,32(5):340-357.
    [13]JIANG M J,YU H S,HARRIS D.Bond rolling resistance and its effect on yielding of bonded granulates by DEManalyses[J].International Journal for Numerical and Analytical Methods in Geomechanics,2006,30(8):723-761.
    [14]SHI G H.Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block systems[D].Berkeley:University of California,1988.
    [15]ALDER B J,WAINWRIGHT T E.Phase transition for a hard sphere system[J].Journal of Chemical Physics,1957,27(5):1208-1209.
    [16]SANDEEP C S,HE H,SENETAKIS K.An experimental micromechanical study of sand grain contacts behavior from different geological environments[J].Engineering Geology,2018,246:176-186.
    [17]赵古田.固液界面双电层结构的理论与实验研究[D].南京:东南大学,2014.(ZHAO Gu-tian.Theoretical and experimental study on electric double layer structure near solid-liquid interface[D].Nanjing:Southeast University,2014.(in Chinese))
    [18]JIANG M J,SUN Y G,LI L Q,et al.Contact behavior of idealized granules bonded in two different interparticle distances:an experimental investigation[J].Mechanics of Materials,2012,55(14):1-15.
    [19]蒋明镜,金树楼,刘蔚,等.粒间胶结接触力学特性的三维试验研究[J].岩土力学,2015,36(增刊1):9-13.(JIANG Ming-jing,JIN Shu-lou,LIU Wei,et al.Three-dimensional experimental study of mechanical behaviors of bonded granules[J].Rock and Soil Mechanics,2015,36(S1):9-13.(in Chinese))
    [20]ZHAO B D,WANG J F,COOP M R,et al.An investigation of single sand particle fracture using X-ray micro-tomography[J].Géotechnique,2015,65(8):625-641.
    [21]MOLLON G,ZHAO J D.Generating realistic 3d sand particles using fourier descriptors[J].Granular Matter,2013,15(1):95-108.
    [22]LI X,YANG D,YU H S.Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes[J].Granular Matter,2016,18(3):53.
    [23]JIANG M J,SHEN Z F,WANG J F.A novel three-dimensional contact model for granulates incorporating rolling and twisting resistances[J].Computers and Geotechnics,2015,65:147-163.
    [24]FENG Y T,OWEN D R J.Discrete element modelling of large scale particle systems:I exact scaling laws[J].Computational Particle Mechanics,2014,1(2):159-168.
    [25]JIANG M J,KONRAD J M,LEROUEIL S.An efficient technique for generating homogeneous specimens for DEMstudies[J].Computers and Geotechnics,2003,30(5):579-597.
    [26]KATSUKI S,ISHIKAWA N,OHIRA Y,et al.Shear strength of rod material[J].Journal of Civil Engineering,1989,410(8):1-12.(in Japanese)
    [27]ROTHENBURG L,BATHURST R J.Micromechanical features of granular assemblies with planar elliptical particles[J].Géotechnique,1992,42(1):79-95.
    [28]CIANTIA M O,BOSCHI K,SHIRE T,et al.Numerical techniques for fast generation of large discrete-element models[J].Engineering and Computational Mechanics,2018:1-15.
    [29]CUNDALL P A.Computer simulations of dense sphere assemblies[J].Studies in Applied Mechanics,1988,20:113-123.
    [30]THORNTON C,CUMMINS S J,CLEARY P W.An investigation of the comparative behaviour of alternative contact force models during inelastic collisions[J].Powder Technology,2013,233:30-46.
    [31]JIANG M J,LEROUEIL S,ZHU H H,et al.Two-dimensional discrete element theory for rough particles[J].International Journal of Geomechanics,2009,9(1):20-33.
    [32]LI T,JIANG M J,THORNTON C.Three-dimensional discrete element analysis of triaxial tests and wetting tests on unsaturated compacted silt[J].Computers and Geotechnics,2018,97:90-102.
    [33]JIANG M J,SHEN Z F,THORNTON C.Microscopic contact model of lunar regolith for high efficiency discrete element analyses[J].Computers and Geotechnics,2013,54:104-116.
    [34]LU N,ANDERSON M T,LIKOS W J,et al.A discrete element model for kaolinite aggregate formation during sedimentation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(8):965-980.
    [35]POTYONDY D O,CUNDALL P A.A bonded-particle model for rock[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1329-1364.
    [36]POTYONDY D O.Parallel-bond refinements to match macroproperties of hard rock[C]//Proceedings of Second Internationl FLAC/DEM Symposium.Melbourne,2011.
    [37]DING X,ZHANG L.A new contact model to improve the simulated ratio of unconfined compressive strength to tensile strength in bonded particle models[J].International Journal of Rock Mechanics and Mining Sciences,2014,69:111-119.
    [38]MA Y F,HUANG H Y.A displacement-softening contact model for discrete element modeling of quasi-brittle materials[J].International Journal of Rock Mechanics and Mining Sciences,2018,104:9-19.
    [39]BRENDEL L,T?R?K J,KIRSCH R,et al.A contact model for the yielding of caked granular materials[J].Granular Matter,2011,13(6):777-786.
    [40]BROWN N J,CHEN J F,OOI J Y.A bond model for DEMsimulation of cementitious materials and deformable structures[J].Granular Matter,2014,16(3):299-311.
    [41]JIANG M J,ZHANG N,CUI L,et al.A size-dependent bond failure criterion for cemented granules based on experimental studies[J].Computers and Geotechnics,2015,69:182-198.
    [42]JIANG M J,LIU F,ZHOU Y P.A bond failure criterion for DEM simulations of cemented geomaterials considering variable bond thickness[J].International Journal for Numerical and Analytical Methods in Geomechanics,2014,38(18):1871-1897.
    [43]SHEN Z F,JIANG M J,WAN R.Numerical study of inter-particle bond failure by 3D discrete element method[J].International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(4):523-545.
    [44]WANG H N,GONG H,LIU F,et al.Size-dependent mechanical behavior of an intergranular bond revealed by an analytical model[J].Computers and Geotechnics,2017,89:153-167.
    [45]JIANG M J,CHEN H,CROSTA G B.Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model[J].International Journal of Rock Mechanics and Mining Sciences,2015,78:175-189.
    [46]JIANG M J,JIANG T,CROSTA G B,et al.Modeling failure of jointed rock slope with two main joint sets using a novel DEM bond contact model[J].Engineering Geology,2015,193:79-96.
    [47]SHEN Z F,JIANG M J,THORNTON C.DEM simulation of bonded granular material:Part I contact model and application to cemented sand[J].Computers and Geotechnics,2016,75:192-209.
    [48]李涛,蒋明镜,张鹏.非饱和结构性黄土侧限压缩和湿陷试验三维离散元分析[J].岩土工程学报,2018,40(增刊1):39-44.(LI Tao,JIANG Ming-jing,ZHANGPeng.DEM analyses of oedometer and wetting tests on unsaturated structured loess[J].Chinese Journal of Geotechnical Engineering,2018,40(S1):39-44.(in Chinese)).
    [49]TSUJI Y,KAWAGUCHI T,TANAKA T.Discrete particle simulation of two-dimensional fluidized bed[J].Powder Technology,1993,77(1):79-87.
    [50]EL SHAMY U,ZEGHAL M.Coupled continuum-discrete model for saturated granular soils[J].Journal of Engineering Mechanics,2005,131(4):413-426.
    [51]POTAPOV A V,HUNT M L,CAMPBELL C S.Liquid-solid flows using smoothed particle hydrodynamics and the discrete element method[J].Powder Technology,2001,116(2):204-213.
    [52]TAN H,CHEN S.A hybrid DEM-SPH model for deformable landslide and its generated surge waves[J].Advances in Water Resources,2017,108:256-276.
    [53]COOK B K,NOBLE D R,PREECE D S,et al.Direct simulation of particle-laden fluids[C]//Pacific Rocks.Rotterdam,2000:279-286.
    [54]TRAN D K,PRIME N,FROIIO F,et al.Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling[J].European Journal of Environmental and Civil Engineering,2017,21(7/8):960-987.
    [55]罗勇,龚晓南,吴瑞潜.颗粒流模拟和流体与颗粒相互作用分析[J].浙江大学学报(工学版),2007,41(11):1932-1936.(LUO Yong,GONG Xiao-nan,WU Rui-qian.Analysis and simulation of fluid-particles interaction with particle flow code[J].Journal of Zhejiang University(Engineering Science),2007,41(11):1932-1936.(in Chinese))
    [56]ZEGHAL M,EL SHAMY U.Liquefaction of saturated loose and cemented granular soils[J].Powder Technology,2008,184(2):254-265.
    [57]ZHAO J D,SHAN T.Coupled CFD-DEM simulation of fluid-particle interaction in geomechanics[J].Powder Technology,2013,239:248-258.
    [58]王胤,艾军,杨庆.考虑粒间滚动阻力的CFD-DEM流-固耦合数值模拟方法[J].岩土力学,2017,38(6):1771-1780.(WANG Yi,AI Jun,YANG Qing.ACFD-DEM coupled method incorporating soil inter-particle rolling resistance[J].Rock and Soil Mechanics,2017,38(6):1771-1780.(in Chinese))
    [59]ZHAO T,DAI F,XU N W.Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers[J].Landslides,2017,14(1):189-201.
    [60]CHENG K,WANG Y,YANG Q.A semi-resolved CFD-DEMmodel for seepage-induced fine particle migration in gap-graded soils[J].Computers and Geotechnics,2018,100:30-51.
    [61]蒋明镜,张望城.一种考虑流体状态方程的土体CFD-DEM耦合数值方法[J].岩土工程学报,2014,36(5):793-801.(JIANG Ming-jing,ZHANG Wang-cheng.Coupled CFD-DEM method for soils incorporating equation of state for liquid[J].Chinese Journal of Geotechnical Engineering,2014,36(5):793-801.(in Chinese)).
    [62]O'SULLIVAN C.Particulate discrete element modelling:a geomechanics perspective[M].London:CRC Press,2011.
    [63]沈亚男.净砂管涌理论的三维CFD-DEM耦合分析[D].南京:河海大学,2017.(SHEN Ya-nan.Three dimensional CFD-DEM coupling analysis of pure sand’s piping theory[D].Nanjing:Hohai University,2017.(in Chinese))
    [64]谭亚飞鸥.考虑循环荷载的三维微观胶结模型及微生物处理砂土循环三轴CFD-DEM耦合模拟[D].上海:上海理工大学,2018.(TAN Ya-fei-ou.A novel three-dimensional bonded contact model incorporating the effect of cyclic loads and CFD-DEM simulation of microbially treated sands under undrained consolidated cyclic triaxial tests[D].Shanghai:University of Shanghai for Science and Technology,2018.(in Chinese))
    [65]WANNE T S,YOUNG R P.Bonded-particle modeling of thermally fractured granite[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(5):789-799.
    [66]XIA M,ZHAO C,HOBBS B E.Particle simulation of thermally-induced rock damage with consideration of temperature-dependent elastic modulus and strength[J].Computers and Geotechnics,2014,55:461-473.
    [67]TOMAC I,GUTIERREZ M.Formulation and implementation of coupled forced heat convection and heat conduction in DEM[J].Acta Geotechnica,2015,10(4):421-433.
    [68]朱方园.深海能源土温-压-力微观胶结模型及水合物升温分解锚固桩承载特性离散元分析[D].上海:同济大学,2013.(ZHU Fang-yuan.A thermal-hydro-mechanical bond contact model for methane hydrate bearing sediments and DEM investigating the uplift capacity of their embedded pile after thermal dissociation of hydrate[D].Shanghai:Tongji University,2013.(in Chinese))
    [69]FELIPPA C A,PARK K C.Staggered transient analysis procedures for coupled mechanical systems:Formulation[J].Computer Methods in Applied Mechanics and Engineering,1980,24(1):61-111.
    [70]TU F,LING D,HU C,et al.DEM-FEM analysis of soil failure process via the separate edge coupling method[J].International Journal for Numerical and Analytical Methods in Geomechanics,2017,41(9):1157-1181.
    [71]ZHAO X L,XU J,ZHANG Y H,et al.Coupled DEM and FDM algorithm for geotechnical analysis[J].International Journal of Geomechanics,2018,18(6):04018040.
    [72]LORIG L J,BRADY B H G,CUNDALL P A.Hybrid distinct element-boundary element analysis of jointed rock[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1986,23(4):303-312.
    [73]CHEN S G,ZHAO J.Modeling of tunnel excavation using a hybrid DEM/BEM method[J].Computer-Aided Civil and Infrastructure Engineering,2002,17(5):381-386.
    [74]WANG H N,XIAO G,JIANG M J,et al.Investigation of rock bolting for deeply buried tunnels via a new efficient hybrid DEM-Analytical model[J].Tunnelling and Underground Space Technology,2018,82:366-379.
    [75]CHEW S H,KAMRUZZAMAN A H M,LEE F H.Physicochemical and engineering behavior of cement treated clays[J].Journal of Geotechnical and Geoenvironmental Engineering,2004,130(7):696-706.
    [76]AMOROSI A,RAMPELLO S.An experimental investigation into the mechanical behaviour of a structured stiff clay[J].Géotechnique,2007,57(2):153-166.
    [77]DELAGE P,LEFEBVRE G.Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J].Canadian Geotechnical Journal,1984,21(1):21-35.
    [78]高国瑞.中国红土的微结构和工程性质[J].岩土工程学报,1985,7(5):10-21.(GAO Guo-rui.The microstructures and engineering properties of red soil in China[J].Chinese Jounal of Geotechnical Engineering,1985,7(5):10-21.(in Chinese))
    [79]DELAGE P.A microstructure approach to the sensitivity and compressibility of some Eastern Canada sensitive clays[J].Géotechnique,2010,60(5):353-368.
    [80]ZHANG X W,LI J,KONG L W.An investigation of alterations in Zhanjiang clay properties due to atmospheric oxidation[J].Géotechnique,2014,64(12):1003-1009.
    [81]HICHER P Y,WAHYUDI H,TESSIER D.Microstructure analysis of inherent and induced anisotropy in clay[J].Mechanics of Cohesive-Frictional Materials,2000,5(5):341-371.
    [82]蒋明镜,彭立才,朱合华,等.珠海海积软土剪切带微观结构试验研究[J].岩土力学,2010,31(7):2017-2023.(JIANG Ming-jing,PENG Li-cai,ZHU He-hua,et al.Microscopic investigation on shear band of marine clay in Zhuhai,China[J].Rock and Soil Mechanics,2010,31(7):2017-2023.(in Chinese))
    [83]LEI H,LU H,WANG X,et al.Changes in soil micro-structure for natural soft clay under accelerated creep condition[J].Marine Geotechnology,2016,34(4):365-375.
    [84]SANTAMARINA J C,KLEIN A,FAM M A.Soils and Waves[M].New York:John Wiley and Sons,2001.
    [85]MITCHELL J K,SOGA K.Fundamentals of soil behavior[M].3rd ed.New York:John Wiley and Sons,2005.
    [86]VOOTTIPRUEX P,BERGADO D T,SUKSAWAT T,et al.Behavior and simulation of deep cement mixing(DCM)and stiffened deep cement mixing(SDCM)piles under full scale loading[J].Soils and Foundations,2011,51(2):307-320.
    [87]贾金生,郑璀莹,王月,等.胶结颗粒料坝筑坝理论探讨与实践进展[J].中国科学:技术科学,2018,48(10):1049-1056.(JIA Jin-sheng,ZHENG Cui-ying,WANG Yue,et al.Theoretical discussion and practical progress of cemented material dam construction[J].Scientia Sinica Technologica,2018,48(10):1049-1056.(in Chinese))
    [88]CUCCOVILLO T,COOP M R.Yielding and pre-failure deformation of structured sands[J].Géotechnique,1997,47(3):491-508.
    [89]ISMAIL M A,JOER H A,RANDOLPH M F,et al.Cementation of porous materials using calcite[J].Géotechnique,2002,52(5):313-324.
    [90]ISMAIL M A,JOER H A,SIM W H,et al.Effect of cement type on shear behavior of cemented calcareous soil[J].Journal of Geotechnical and Geoenvironmental Engineering,2002,128(6):520-529.
    [91]蒋明镜,刘静德.结构性砂土胶结厚度分布特性试验研究[J].地下空间与工程学报,2016,12(2):362-368.(JIANGMing-jing,LIU Jing-de.Experimental and numerical research on bonding properties of structured sand[J].Chinese Journal of Underground Space and Engineering,2016,12(2):362-368.(in Chinese))
    [92]TERZIS D,LALOUI L.3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation[J].Scientific reports,2018,8(1):1416.
    [93]TAGLIAFERRI F,WALLER J,ANDòE,et al.Observing strain localisation processes in bio-cemented sand using x-ray imaging[J].Granular Matter,2011,13(3):247-250.
    [94]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学(B辑),1987(12):1309-1318.(LEI Xiang-yi.Pore type and collapsibility of Chinese loess[J].Science in China,Ser B,1987(12):1309-1318.(in Chinese))
    [95]JIANG M J,ZHANG F G,HU H J,et al.Structural characterization of natural loess and remolded loess under triaxial tests[J].Engineering Geology,2014,181:249-260.
    [96]SMALLEY I J,CABRERA J G.The shape and surface texture of loess particles[J].Geological Society of America Bulletin,1970,81(5):1591-1596.
    [97]蒲毅彬,陈万业,廖全荣.陇东黄土湿陷过程的CT结构变化研究[J].岩土工程学报,2000,22(1):49-54.(PUYi-bin,CHEN Wan-ye,LIAO Quan-rong.Research on CTstructure changing for damping process of loess in Longdong[J].Chinese Journal of Geotechnical Engineering,2000,22(1):49-54.(in Chinese))
    [98]方祥位,陈正汉,申春妮,等.非饱和原状Q2黄土屈服硬化过程的细观结构演化分析[J].岩土工程学报,2008,30(7):1044-1050.(FANG Xiang-wei,CHEN Zheng-han,SHENChun-ni,et al.Analysis on meso-structure evolution of unsaturated natural Q2 loess during yield hardening[J].Chinese Journal of Geotechnical Engineering,2008,30(7):1044-1050.(in Chinese))
    [99]高国瑞.黄土显微结构分类与湿陷性[J].中国科学,1980(12):1203-1208.(GAO Guo-rui.Microstructure classification and collapsibility of loess[J].Science in China,1980(12):1203-1208.(in Chinese))
    [100]蒋明镜,沈珠江,ADACHI T等.人工制备湿陷性黄土的微结构分析[J].岩土工程学报,1999,21(4):486-491.(JIANG Ming-jing,SHEN Zhu-jiang,ADACHI T,et al.Microanalysis on artificially-prepared structured collapsible loess[J].Chinese Journal of Geotechnical Engineering,1999,21(4):486-491.(in Chinese))
    [101]CHONG Z R,YANG S H B,BABU P,et al.Review of natural gas hydrates as an energy resource:prospects and challenges[J].Applied Energy,2016,162:1633-1652.
    [102]JIN Y,HAYASHI J,NAGAO J,et al.New method of assessing absolute permeability of natural methane hydrate sediments by microfocus X-ray computed tomography[J].Japanese Journal of Applied Physics,2007,46(5A):3159-3162.
    [103]SANTAMARINA J C,JANG J.Gas production from hydrate bearing sediments:geomechanical implications[J].NETL Methane Hydrate Newsletter:Fire in the ice,2009,9(4):18-22.
    [104]WINTERS W J,WAITE W F,MASON D,et al.Methane gas hydrate effect on sediment acoustic and strength properties[J].Journal of Petroleum Science and Engineering,2007,56(1/2/3):127-135.
    [105]李承峰,胡高伟,张巍,等.有孔虫对南海神狐海域细粒沉积层中天然气水合物形成及赋存特征的影响[J].中国科学:地球科学,2016,46(9):1223-1230.(LI Chen-feng,HU Gao-wei,Zhang Wei,et al.Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from Shenhu area,South China Sea[J].Scientia Sinica Terrae,2016,46(9):1223-1230.(in Chinese))
    [106]WAITE W F,SANTAMARINA J C,CORTES D D,et al.Physical properties of hydrate-bearing sediments[J].Reviews of Geophysics,2009,47(4):RG4003.
    [107]SOGA K,LEE S L,NG M,et al.Characterisation and engineering properties of methane hydrate soils[J].Characterisation and Engineering Properties of Natural Soils2007,4:2591-2642.
    [108]SAHOO S K,MADHUSUDHAN B N,‐MARíNMORENO H,et al.Laboratory insights into the effect of sediment‐hosted methane hydrate morphology on elastic wave velocity from time‐lapse 4D synchrotron X-ray computed tomography[J].Geochemistry,Geophysics,Geosystems,2018,19(11):4502-4521.
    [109]田慧会,韦昌富,颜荣涛,等.粉土中二氧化碳水合物分解过程的核磁试验研究[J].中国科学:物理学力学天文学,2019,49(3):034615.(TIAN Hui-hui,WEI Chang-fu,YAN Rong-tao,et al.A NMR-based analysis of carbon dioxide hydrate dissociation process in silt[J].Scientia Sinica Physica,Mechanica and Astronomica,2019,49(3):034615.(in Chinese))
    [110]HYODO M,YONEDA J,YOSHIMOTO N,et al.Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed[J].Soils and Foundations,2013,53(2):299-314.
    [111]HEIKEN G,VANIMAN D,FRENCH B M.Lunar sourcebook:a user's guide to the Moon[M].Cambridge:Cambridge University Press,1991.
    [112]欧阳自远.月球科学概论[M].北京,中国宇航出版社,2005.(OUYANG Zi-yuan.Introduction of lunar sciences[M].Beijing:China Aerospace Publishing House,2005.(in Chinese))
    [113]Lunar and Planetary Institute.Lunar samples by category,soil:10085 Coarse-fines[OL].
    [114]MCKAY D S,HEIKEN G H,TAYLOR R M,et al.Apollo14 soils:size distribution and particle types[J].Geochimica et Cosmochimica Acta(Third Lunar Science Conference Proceedings,Houton),1972,1(S3):983-994.
    [115]CHIARAMONTI A N,GOGUEN J D,GARBOCZI E J.Quantifying the 3-dimensional shape of lunar regolith particles using x-ray computed tomography and scanning electron microscopy at sub-γresolution[J].Microscopy and Microanalysis,2017,23(S1):2194-2195.
    [116]COLE D M,HOPKINS M A.The contact properties of naturally occurring geologic materials:experimental observations[J].Granular Matter,2016,18(3):62.
    [117]SANDEEP C S,SENETAKIS K.Grain-scale mechanics of quartz sand under normal and tangential loading[J].Tribology International,2018,117:261-271.
    [118]YANG L,WANG D,GUO Y,et al.Tribological behaviors of quartz sand particles for hydraulic fracturing[J].Tribology International,2016,102:485-496.
    [119]SENETAKIS K,COOP M R,TODISCO M C.The inter-particle coefficient of friction at the contacts of Leighton Buzzard sand quartz minerals[J].Soils and Foundations,2013,53(5):746-755.
    [120]MICHALOWSKI R L,WANG Z,NADUKURU S S.Maturing of contacts and ageing of silica sand[J].Géotechnique,2018,68(2):133-145.
    [121]GRAS J P,DELENNE J Y,EI YOUSSOUFI M S.Study of capillary interaction between two grains:a new experimental device with suction control[J].Granular Matter,2013,15(1):49-56.
    [122]JUNG J W,SANTAMARINA J C.Hydrate adhesive and tensile strengths[J].Geochemistry,Geophysics,Geosystems,2011,12:Q08003.
    [123]DELENNE J Y,EI YOUSSOUFI M S,CHERBLANC F,et al.Mechanical behaviour and failure of cohesive granular materials[J].International Journal for Numerical and Analytical Methods in Geomechanics,2004,28(15):1577-1594.
    [124]MCDOWELL G R,BOLTON M D.On the micromechanics of crushable aggregates[J].Géotechnique,1998,48(5):667-679.
    [125]AFSHAR T,DISFANI M M,ARULRAJAH A,et al.Impact of particle shape on breakage of recycled construction and demolition aggregates[J].Powder Technology,2017,308:1-12.
    [126]NAKATA Y,HYDE A F L,HYODO M,et al.A probabilistic approach to sand particle crushing in the triaxial test[J].Géotechnique,1999,49(5):567-583.
    [127]PARAB N D,CLAUS B,HUDSPETH M C,et al.Experimental assessment of fracture of individual sand particles at different loading rates[J].International Journal of Impact Engineering,2014,68:8-14.
    [128]吴迪.考虑颗粒破碎的钙质砂动力特性试验分析与离散元数值模拟[D].上海:同济大学,2018.(WU Di.DEMand experimental analysis of the dynamic behavior of crushable carbonate sands[D].Shanghai:Tongji University,2018.(in Chinese))
    [129]丁志军.基于微观的钙质砂基本物理力学特性试验研究[D].上海:上海理工大学,2017.(DING Zhi-jun.Experimental study on basic physical and mechanical properties of calcareous sand based on microscopic mechanism[D].Shanghai:University of Shanghai for Science and Technology,2017.(in Chinese))
    [130]ANANDARAJAH A.Numerical simulation of one-dimensional behavior of kaolinite[J].Géotechnique,2000,50(5):509-519.
    [131]YAO M,ANANDARAJAH A.Three-dimensional discrete element method of analysis of clays[J].Journal of Engineering Mechanics,2003,129(6):585-596.
    [132]KATTI D R,MATAR M I,KATTI K S,et al.Multiscale modeling of swelling clays:a computational and experimental approach[J].KSCE Journal of Civil Engineering,2009,13(4):243-255.
    [133]BAYESTEH H,MIRGHASEMI A A.Numerical simulation of pore fluid characteristic effect on the volume change behavior of montmorillonite clays[J].Computers and Geotechnics,2013,48(3):146-155.
    [134]ANANDARAJAH A,CHEN J.Double-layer repulsive force between two inclined platy particles according to the gouy-chapman theory[J].Journal of Colloid and Interface Science,1994,168(1):111-117.
    [135]ANANDARAJAH A,CHEN J.Van der Waals attractive force between clay particles in water and contaminant[J].Soils and Foundations,1997,37(2):27-37.
    [136]SHANG X,HU N,ZHOU G.Calculation of the repulsive force between two clay particles[J].Computers and Geotechnics,2015,69:272-278.
    [137]JIANG M J,LI T,HU H J,et al.DEM analyses of one-dimensional compression and collapse behaviour of unsaturated structural loess[J].Computers and Geotechnics,2014,60:47-60.
    [138]JIANG M J,LI T,THORNTON C,et al.Wetting-induced collapse behavior of unsaturated and structural loess under biaxial tests using distinct element method[J].International Journal of Geomechanics(ASCE),2016,17(1):06016010.
    [139]FISHER R A.On the capillary forces in an ideal soil[J].Journal of Agricultural Science,1926,16:492-505.
    [140]VANAPALLI S K,FREDLUND D G,PUFAHL D E,et al.Model for the prediction of shear strength with respect to soil suction[J].Canadian Geotechnical Journal,1996,33(3):379-392.
    [141]SHEN Z F,JIANG M J.DEM simulation of bonded granular material:Part II extension to grain-coating type methane hydrate bearing sand[J].Computers and Geotechnics,2016,75:225-243.
    [142]杜文浩.胶结型深海能源土温-压-力-化微观接触模型及其多尺度离散元模拟[D].上海:同济大学,2018.(DUWen-hao.A thermal-hydro-mechanical-chemical bond contact model and multi-scale dem simulation for grain-cementing type MHBS[D].Shanghai:Tongji University,2018.(in Chinese))
    [143]JIANG M J,HE J,WANG J F,et al.DEM analysis of geomechanical properties of cemented methane hydrate-bearing soils at different temperatures and pressures[J].International Journal of Geomechanics,2016,16(3):04015087.
    [144]JIANG M J,SHEN Z F,WU D.CFD-DEM simulation of submarine landslide triggered by seismic loading in methane hydrate rich zone[J].Landslides,2018,15(11):2227-2241.
    [145]周凤玺,赖远明.冻结砂土力学性质的离散元模拟[J].岩土力学,2010,31(12):4016-4020.(ZHOU Feng-xi,LAIYuan-ming.Simulation of mechanical behavior for frozen sand clay by discrete element method[J].Rock and Soil Mechanics,2010,31(12):4016-4020.(in Chinese))
    [146]PERKO H A,NELSON J D,SADEH W Z.Surface cleanliness effect on lunar soil shear strength[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(4):371-383.
    [147]JIANG M J,YIN Z Y,SHEN Z F.Shear band formation in lunar regolith by discrete element analyses[J].Granular Matter,2016,18:32.
    [148]JIANG M J,DAI Y S,CUI L,et al.Experimental and DEManalyses on wheel-soil interaction[J].Journal of Terramechanics,2017,76:15-28.
    [149]XI B L,JIANG M J.3D DEM analysis of the effects of low confining pressure on mechanical behavior of lunar regolith[C]//Atlanta Symposium on Geo-mechanics from Micro to Macro in Research and Practice.Atlanta,2018.
    [150]ODA M.Initial fabrics and their relations to mechanical properties of granular material[J].Soils and Foundations,1972,12(1):17-36.
    [151]YANG Z X,LI X S,YANG J.Quantifying and modelling fabric anisotropy of granular soils[J].Géotechnique,2008,58(4):237-248.
    [152]TING J M,KHWAJA M,MEACHUM L R,et al.An ellipse-based discrete element model for granular materials[J].International Journal for Numerical and Analytical Methods in Geomechanics 1993,17(9):603-623.
    [153]NG T T.Numerical simulations of granular soil using elliptic particles[J].Computer and Geotechnics,1994,16(2):153-169.
    [154]NOUGUIER-LEHON C,CAMBOU B,VINCENS E.Influence of particle shape and angularity on the behaviour of granular materials:a numerical analysis[J].International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(14):1207-1226.
    [155]HOSSEININIA E S.Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles[J].Particuology,2012,10(5):542-552.
    [156]JIANG M J,SIMA J,LI L Q,et al.Investigation of influence of particle characteristics on the non-coaxiality of anisotropic granular materials using DEM[J].International Journal for Numerical and Analytical Methods in Geomechanics,2017,41(2):198-222.
    [157]NG T T.Discrete element method simulations of the critical state of a granular material[J].International Journal of Geomechanics,2009,9(5):209-216.
    [158]GUO N,ZHAO J D.The signature of shear-induced anisotropy in granular media[J].Computers and Geotechnics,2013,47:1-15.
    [159]JIANG M J,ZHANG A,FU C.3-D DEM simulations of drained triaxial tests on inherently anisotropic granulates[J].European Journal of Environmental and Civil Engineering,2018,22(S1):37-56.
    [160]LI X S,DAFALIAS Y F.Anisotropic critical state theory:role of fabric[J].Journal of Engineering Mechanics,2012,138(3):263-275.
    [161]WAN R G,GUO P J.Stress dilatancy and fabric dependencies on sand behavior[J].Journal of Engineering Mechanics,2004,130(6):635-645.
    [162]YANG Z X,WU Y.Critical state for anisotropic granular materials:a discrete element perspective[J].International Journal of Geomechanics,2017,17(2):04016054.
    [163]ZHOU W,LIU J Y,MA G,et al.Three-dimensional DEMinvestigation of critical state and dilatancy behaviors of granular materials[J].Acta Geotechnica,2017,12(3):527-540.
    [164]FU P C,DAFALIAS Y F.Fabric evolution within shear bands of granular materials and its relation to critical state theory[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(18):1918-1948.
    [165]XIE Y H,YANG Z X,BARRETO D,et al.The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials[J].Granular Matter,2017,19(2):35.
    [166]ZHAO J,GUO N.Unique critical state characteristics in granular media considering fabric anisotropy[J].Géotechnique.2013,63(8):695.
    [167]刘静德.各向异性结构性砂土宏微观力学特性数值模拟及其本构模型[D].上海:同济大学,2014.(LIU Jing-de.Consititutive model and numerical simulation of macro-micro behaviors of anisotropic structural sands[D].Shanghai:Tongji University,2014.(in Chinese))
    [168]AL-RKABY A H J,CHEGENIZADEH A,NIKRAZ H R.An experimental study on the cyclic settlement of sand and cemented sand under different inclinations of the bedding angle and loading amplitudes[J/OL].European Journal of Environmental and Civil Engineering,DOI:10.1080/19648189.2017.1327891.
    [169]ANANDARAJAH A.On influence of fabric anisotropy on the stress-strain behavior of clays[J].Computers and Geotechnics,2000,27(1):1-17.
    [170]DESRUES J,ANDòE,MEVOLI F A,et al.How does strain localise in standard triaxial tests on sand:Revisiting the mechanism 20 years on[J].Mechanics Research Communications,2018,92:142-146.
    [171]HAN C,VARDOULAKIS I G.Plane-strain compression experiments on water-saturated fine-grained sand[J].Géotechnique,1991,41(1):49-78.
    [172]ALSHIBLI K A,JARRAR M F,DRUCKREY A M,et al.Influence of particle morphology on 3D kinematic behavior and strain localization of sheared sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2017,143(2):04016097.
    [173]DRUCKREY A M,ALSHIBLI K A,AL-RAOUSH R I.Discrete particle translation gradient concept to expose strain localisation in sheared granular materials using 3Dexperimental kinematic measurements[J].Géotechnique,2018,68(2):162-170.
    [174]JIANG M J,ZHU H H,LI X M.Strain localization analyses of idealized sands in biaxial tests by distinct element method[J].Frontiers of Architecture and Civil Engineering in China,2010,4(2):208-222.
    [175]JIANG M J,YU H S,HARRIS D.Kinematic variables bridging discrete and continuum granular mechanics[J].Mechanics Research Communication,2006,33(5):651-666.
    [176]ODA M,IWASHITA K.Study on couple stress and shear band development in granular media based on numerical simulation analyses[J].International Journal of Engineering Science,2000,38(15):1713-1740.
    [177]GU X Q,HUANG M S,QIAN J G.Discrete element modeling of shear band in granular materials[J].Theoretical and Applied Fracture Mechanics,2014,72:37-49.
    [178]TANG H,ZHANG X,JI S.Discrete element analysis for shear band modes of granular materials in triaxial tests[J].Particulate Science and Technology,2017,35(3):277-290.
    [179]KOZICKI J,TEJCHMAN J.Relationship between vortex structures and shear localization in 3D granular specimens based on combined DEM and Helmholtz-Hodge decomposition[J].Granular Matter,2018,20(3):48.
    [180]JIANG M J,YAN H B,ZHU H H,et al.Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses[J].Computers and Geotechnics,2011,38(1):14-29.
    [181]JIANG M J,CHEN H,TAPIAS M,et al.Study of mechanical behavior and strain localization of methane hydrate bearing sediments with different saturations by a new DEM model[J].Computers and Geotechnics,2014,57:122-138.
    [182]MA G,REGUEIRO R A,ZHOU W,et al.Role of particle crushing on particle kinematics and shear banding in granular materials[J].Acta Geotechnica,2018,13(3):601-618.
    [183]ZHAO J D,GUO N.The interplay between anisotropy and strain localisation in granular soils:a multiscale insight[J].Géotechnique,2015,65(8):642-656.
    [184]LI P,VANAPALLI S,LI T L.Review of collapse triggering mechanism of collapsible soils due to wetting[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(2):256-274.
    [185]JENNINGS J E,KNIGHT K.The additional settlement of foundation due to collapse of sandy soils on wetting[C]//Proceedings of 4th International Conference on Soil Mechanics and Foundation Engineering.London,1957:316-319.
    [186]蒋明镜,沈珠江,赵魁芝,等.结构性黄土湿陷性指标室内测定方法的探讨[J].水利水运科学研究,1999(1):65-71.(JIANG Ming-jing,SHEN Zhu-jiang,ZHAO Kui-zhi,et al.Laboratory determination of collapsibility index of structural loess[J].Journal of Nanjing Hydraulic Research Institute,1999(1):65-71.(in Chinese))
    [187]JIANG M J,HU H J,LIU F.Summary of collapsible behaviour of artificially structured loess in oedometer and triaxial wetting tests[J].Canadian Geotechnical Journal,2012,49(10):1147-1157.
    [188]谢定义.试论我国黄土力学研究中的若干新趋向[J].岩土工程学报,2001,23(1):3-13.(XIE Ding-yi.Exploration of some new tendencies in research of loess soil mechanics[J].Chinese Journal of Geotechnical Engineering,2001,23(1):3-13.(in Chinese))
    [189]BJERRUM L.Engineering geology of normally consolidated marine clays as related to the settlement of buildings[J].Géotechnique,1967,17(2):83-118.
    [190]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,20(1):100-111.(SHEN Zhu-jiang.Engineering properties of soft soils and design of soft ground[J].Chinese Journal of Geotechnical Engineering,1998,20(1):100-111.(in Chinese))
    [191]BURLAND J B.On the compressibility and shear strength of natural clays[J].Géotechnique,1990,40(3):329-378.
    [192]LEROUEIL S,VAUGHAN P R.The general and congruent effects of structure in natural soils and weak rocks[J].Géotechnique,1990,40(3):467-488.
    [193]CUCCOVILLO T,COOP M R.On the mechanics of structured sands[J].Géotechnique,1999,49(6):741-760.
    [194]JIANG M J,YU H S,LEROUEIL S.A simple and efficient approach to capturing bonding effect in naturally microstructured sands by discrete element method[J].International Journal for Numerical Methods in Engineering,2007,69(6):1158-1193.
    [195]DE BONO J P,MCDOWELL G R.Discrete element modelling of one-dimensional compression of cemented sand[J].Granular Matter,2014,16(1):79-90.
    [196]ZHANG F G,JIANG M J.Do the normal compression lines of cemented and uncemented geomaterials run parallel or converge to each other after yielding?[J/OL].European Journal of Environmental and Civil Engineering,DOI:10.1080/19648189.2018.1531788.
    [197]COOP M R,WILLSON S W.Behavior of hydrocarbon reservoir sands and sandstones[J].Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11):1010-1019.
    [198]WANG Y H,LEUNG S C.Characterization of cemented sand by experimental and numerical investigations[J].Journal of Geotechnical and Geoenvironmental Engineering,2008,134(7):992-1004.
    [199]NING Z,KHOUBANI A,EVANS T M.Particulate modeling of cementation effects on small and large strain behaviors in granular material[J].Granular Matter,2017,19(1):7.
    [200]DE BONO J,MCDOWELL G,WANATOWSKI D.DEM of triaxial tests on crushable cemented sand[J].Granular Matter,2014,16(4):563-572.
    [201]蒋明镜,廖优斌,刘蔚,等.考虑胶结强度正态分布下砂土力学特性离散元模拟[J].岩土工程学报,2016,38(增刊2):1-6.(JIANG Ming-jing,LIAO You-bin,LIU Wei,et al.DEM simulation of mechanical behaviour of cemented sand under normal distribution of cementation strength[J].Chinese Journal of Geotechnical Engineering,2016,38(S2):1-6.(in Chinese))
    [202]YANG P,O’DONNELL S,HAMDAN N,et al.3D DEMsimulations of drained triaxial compression of sand strengthened using microbially induced carbonate precipitation[J].International Journal of Geomechanics,2017,17(6):04016143.
    [203]张伏光.基于微观破损机理的结构性砂土三维本构模型研究[D].上海:同济大学,2017.(ZHANG Fu-guang.Astudy on the three dimentional constitutive mode for structural sands based on the micro-mechanism of structure degradation[D].Shanghai:Tongji University,2017.(in Chinese)).
    [204]AFIFI S S,WOODS R D.Long-term pressure effects on shear modulus of soils[J].Journal of Soil Mechanics and Foundations Division,1971,97:1445-1460.
    [205]WANG Y H,GAO Y,LENG G.Experimental characterizations of an aging mechanism of sands[J].Journal of Geotechnical and Geoenvironmental Engineering,2016,142(2):06015016.
    [206]MITCHELL J K,SOLYMAR Z V.Time-dependent strength gain in freshly deposited or densified sand[J].Journal of Geotechnical Engineering,1984,110(11):1559-1576.
    [207]KARIMPOUR H,LADE P V.Time effects relate to crushing in sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2010,136(9):1209-1219.
    [208]KWOK C Y,BOLTON M D.DEM simulations of soil creep due to particle crushing[J].Géotechnique,2013,63(16):1365-1376.
    [209]XU M,HONG J T,SONG E X.DEM study on the macro-and micro-responses of granular materials subjected to creep and stress relaxation[J].Computers and Geotechnics,2018,102:111-124.
    [210]ZHANG Z T,WANG Y H.DEM modeling of aging or creep in sand based on the effects of microfracturing of asperities and evolution of microstructural anisotropy during triaxial creep[J].Acta Geotechnica,2016,11(6):1303-1320.
    [211]EL SHAMY U,DENISSEN C.Microscale characterization of energy dissipation mechanisms in liquefiable granular soils[J].Computers and Geotechnics,2010,37(7/8):846-857.
    [212]WEI J,WANG G.Evolution of fabric anisotropy in cyclic liquefaction of sands[J].Journal of Micromechanics and Molecular Physics,2016,1(3/4):1640005.
    [213]WANG R,FU P,ZHANG J M,et al.DEM analysis of the post-liquefaction shear deformation of sand[R].Livermore:Lawrence Livermore National Lab.(LLNL),2017.
    [214]WEI J,HUANG D,WANG G.Microscale descriptors for particle-void distribution and jamming transition in pre-and post-liquefaction of granular soils[J].Journal of Engineering Mechanics,2018,144(8):04018067.
    [215]魏星,张昭,王刚,等.饱和砂土液化后大变形机理的离散元细观分析[J/OL].岩土力学,10.16285/j.rsm.2017.2323.(WEI Xing,ZHANG Zhao,WANG Gang,et al.DEM study on mechanism of large post-liquefaction deformation of saturated sand[J/OL].Rock and Soil Mechanics,10.16285/j.rsm.2017.2323.(in Chinese))
    [216]JIANG M J,ZHU F Y,UTILI S.Investigation into the effect of backpressure on the mechanical behavior of methane-hydrate-bearing sediments via DEM analyses[J].Computers and Geotechnics,2015,69:551-563.
    [217]BUI HH,KOBAYASHI T,FUKAGAWA R,et al.Numerical and experimental studies of gravity effect on the mechanism of lunar excavations[J].Journal of Terramechanics.2009,46(3):115-124.
    [218]LI X S,DAFALIAS Y F.Constitutive modeling of inherently anisotropic sand behavior[J].Journal of Geotechnical and Geoenvironmental Engineering,ASCE,2002,128:868-880.
    [219]CALLADINE C R.Microstructural view of the mechanical properties of saturated clay[J].Géotechnique,1971,21:391-415.
    [220]YIN Z Y,CHANG C S,HICHER P Y,et al.Micromechanical analysis of the behavior of stiff clay[J].Acta Mechanica Sinica,2011,27(6):1013-1022.
    [221]HATTAB M,CHANG C S.Interaggregate forces and energy potential effect on clay deformation[J].Journal of Engineering Mechanics,2015,141(7):04015014.
    [222]CHANG C S,HICHER P Y.An elastic-plastic model for granular materials with microstructural consideration[J].International Journal of Solids and Structures,2005,42(14):4258-4277.
    [223]NICOT F,DARVE F.A multi-scale approach to granular materials[J].Mechanics of Materials,2005,37(9):980-1006.
    [224]MEIER H A,STEINMANN P,KUHL E.Towards multiscale computation of confined granular media-Contact forces,stresses and tangent operators[J].Technische Mechanik,2008,16(1):77-88.
    [225]GUO N,ZHAO J.A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[J].International Journal for Numerical Methods in Engineering,2014,99(11):789-818.
    [226]ODA M,NEMAT-NASSER S,KONISHI J.Stress-induced anisotropy in granular masses[J].Soils and Foundations,1985,25(3):85-97.
    [227]SUFIAN A,RUSSELL A R,WHITTLE A J.Anisotropy of contact networks in granular media and its influence on mobilised internal friction[J].Géotechnique,2017,67(12):1067-1080.
    [228]NG T T.Shear strength of assemblies of ellipsoidal particles[J].Géotechnique,2004,54(10):659-669.
    [229]GALINDO-TORRES S A,PEDROSO D M,WILLIAMS DJ,et al.Strength of non-spherical particles with anisotropic geometries under triaxial and shearing loading configurations[J].Granular Matter,2013,15(5):531-542.
    [230]YANG Z X,XU T T,CHEN Y N.Unified modeling of the influence of consolidation conditions on monotonic soil response considering fabric evolution[J].Journal of Engineering Mechanics,2018,144(8):04018073.
    [231]MIURA S,TOKI S.Elastoplastic stress-strain relationship for loose sands with anisotropic fabric under three-dimensional stress conditions[J].Soils and Foundations,1984,24(2):43-57.
    [232]KANDASAMI R K,MURTHY T G.Experimental studies on the influence of intermediate principal stress and inclination on the mechanical behaviour of angular sands[J].Granular Matter,2015,17(2):217-230.
    [233]徐琨,周伟,马刚,等.基于离散元法的颗粒破碎模拟研究进展[J].岩土工程学报,2018,40(5):880-889.(XU Kun,ZHOU Wei,MA Gang,et al.Review of particle breakage simulation based on DEM[J].Chinese Journal of Geotechnical Engineering,2018,40(5):880-889.(in Chinese))
    [234]MA G,ZHANG Y,ZHOU W,et al.The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid[J].International Journal of Impact Engineering,2018,113:132-143.
    [235]ZHU F,ZHAO J.A peridynamic investigation on crushing of sand particles[J].Géotechnique,2018,DOI:10.1680/jgeot.17.P.274.
    [236]刘君,刘福海,孔宪京.考虑破碎的堆石料颗粒流数值模拟[J].岩土力学,2008,29(增刊1):107-112.(LIU Jun,LIU Fu-hai,KONG Xian-jing.Particle flow code numerical simulation of particle breakage of rockfill[J].Rock and Soil Mechanics,2008,29(S1):107-112.(in Chinese))
    [237]MCDOWELL G R,HARIRECHE O.Discrete element modelling of soil particle fracture[J].Géotechnique,2002,52(2):131-135.
    [238]CHENG Y P,BOLTON M D,NAKATA Y.Discrete element simulation of crushable soil[J].Géotechnique,2003,53(7):633-641.
    [239]XU M,HONG J T,SONG E X.DEM study on the effect of particle breakage on the macro-and micro-behavior of rockfill sheared along different stress paths[J].Computers and Geotechnics,2017,89:113-127.
    [240]TSOUNGUI O,VALLET D,CHARMET J C.Numerical model of crushing of grains inside two-dimensional granular materials[J].Powder Technology,1999,105(1/2/3):190-198.
    [241]CIANTIA M O,ARROYO M,CALVETTI F,et al.An approach to enhance efficiency of DEM modelling of soils with crushable grains[J].Géotechnique,2015,65(2):91-110.
    [242]ZHOU W,YANG L F,MA G,et al.Macro-micro responses of crushable granular materials in simulated true triaxial tests[J].Granular Matter,2015,17(4):497-509.
    [243]CHENG Y P,BOLTON,M D,NAKATA Y.Crushing and plastic deformation of soils simulated using DEM[J].Géotechnique,2004,54(2):131-141.
    [244]BOLTON M D,NAKATA Y,CHENG Y P.Micro and macro-mechanical behaviour of DEM crushable materials[J].Géotechnique,2008,58(6):471-480.
    [245]DE BONO J P,MCDOWELL G R.Micro mechanics of the critical state line at high stresses[J].Computers and Geotechnics,2018,98:181-188.
    [246]DE BONO J P,MCDOWELL G R.On the micro mechanics of yielding and hardening of crushable granular soils[J].Computers and Geotechnics,2018,97:167-188.
    [247]SCHOLTèS L,HICHER P Y,NICOT F,et al.On the capillary stress tensor in wet granular materials[J].International Journal for Numerical and Analytical Methods in Geomechanics,2009,33(10):1289-1313.
    [248]SHEN Z F,JIANG M J,THORNTON C.Shear strength of unsaturated granular soils:three-dimensional discrete element analyses[J].Granular Matter,2016,18(3):37.
    [249]DURIEZ J,WAN R.Stress in wet granular media with interfaces via homogenization and discrete element approaches[J].Journal of Engineering Mechanics,2016,142(12):04016099.
    [250]孙渝刚.结构性砂土宏微观力学特性的试验研究与数值模拟[D].上海:同济大学,2012.(SUN Yu-gang.Experimental and numerical investigation on macro-and micro-mechanical behaviors of structural sands[D].Shanghai:Tongji University,2012.(in Chinese))
    [251]申志福.深海能源土力学特性三维多尺度数值模拟[D].上海:同济大学,2016.(SHEN Zhi-fu.Three-dimentional multi-scale numerical simulations of the mechanical behavior of methane hydrate bearing sediments[D].Shanghai:Tongji University,2016.(in Chinese))
    [252]沈珠江.结构性黏土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28.(SHEN Zhu-jiang.An elasto-plastic damage model for cemented clays[J].Chinese Journal of Geotechnical Engineering,1993,15(3):21-28.(in Chinese))
    [253]ROUAINIA M,WOOD D M.A kinematic hardening constitutive model for natural clays with loss of structure[J].Géotechnique,2000,50(2):153-164.
    [254]DESAI C S.A consistent finite element technique for work-softening behavior[C]//Proceedings of the International Conference on Computational Methods in Nonlinear Mechanics.Austin,1974.
    [255]NOVA R,CASTELLANZA R,TAMAGNINI C.Aconstitutive model for bonded geomaterials subject to mechanical and/or chemical degradation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2003,27(9):705-732.
    [256]ASAOKA A,NAKANO M,NODA T.Superloading yield surface concept for highly structured soil behavior[J].Soils and Foundations,2000,40(2):99-110.
    [257]JIANG M J,ZHANG F G,SUN Y G.An evaluation on the degradation evolutions in three constitutive models for bonded geomaterials by DEM analyses[J].Computers and Geotechnics,2014,57:1-16.
    [258]蒋明镜,周卫,刘静德,等.基于微观力学机制的各向异性结构性砂土的本构模型研究[J].岩土力学,2016,37(12):3347-3355.(JIANG Ming-jing,ZHOU Wei,LIUJing-de,et al.A constitutive model for anisotropic structured sandy soil based on micromechanical mechanism[J].Rock and Soil Mechanics,2016,37(12):3347-3355.(in Chinese))
    [259]张伏光,蒋明镜.基于微观破损机理的胶结砂土三维本构模型研究[J].岩土工程学报,2018,40(8):1424-1432.(ZHANG Fu-guang,JIANG Ming-jing.Three-dimensional constitutive model for cemented sands based on micro-mechanism of bond degradation[J].Chinese Journal of Geotechnical Engineering,2018,40(8):1424-1432.(in Chinese)).
    [260]李涛.非饱和结构性黄土三维离散元模拟与本构模型研究[D].上海:同济大学,2017.(LI Tao.Three dimentional DEM simulation and constitutive model of unsaturated structural loess[D].Shanghai:Tongji University,2017.(in Chinese))
    [261]ROSCOE K H,BASSETT R H,COLE E R L.Principal axes observed during simple shear of a sand[C]//The 4th European Conference on Soil Mechanics and Foundation Engineering.Oslo,1967:231-237.
    [262]HIGHT D W,GENS A,SYMES M J.The development of a new hollow cylinder apparatus for investigating the effects of principal stress rotation in soils[J].Géotechnique,1983,33(4):355-383.
    [263]JIANG M J,HARRIS D,YU H S.Kinematic models for non-coaxial granular materials:Part II evaluation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2005,29(7):663-689.
    [264]JIANG M J,LIU J D,ARROYO M.Numerical evaluation of three non-coaxial kinematic models using distinct element method for elliptical granular materials[J].International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(18):2468-2488.
    [265]JIANG M J,LI T,CHAREYRE B.Fabric rates applied to kinematic models:evaluating elliptical granular materials under simple shear tests via discrete element method[J].Granular Matter,2016,18(3):46:1-15.
    [266]LI X,YU H S.Numerical investigation of granular material behaviour under rotational shear[J].Géotechnique,2010,60(5):381-394.
    [267]LI B,ZHANG F,GUTIERREZ M.A numerical examination of the hollow cylindrical torsional shear test using DEM[J].Acta Geotechnica,2015,10(4):449-467.
    [268]HARRIS D.A unified formulation for plasticity models of granular and other materials[C]//Proceedings of the Royal Society of London.London,1995:37-49.
    [269]SPENCER A J M.A theory of the kinematics of ideal soils under plane strain conditions[J].Journal of the Mechanics and Physics of Solids,1964,12(5):337-351.
    [270]DE JOSSELIN DE JONG G.The double sliding,free rotating model for granular assemblies[J].Géotechnique,1971,21(3):155-163.
    [271]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003(7):1-6.(SHEN Zhu-jiang,HU Zai-qiang.Binary medium model for loess[J].Journal of Hydraulic Engineering,2003(7):1-6.(in Chinese))
    [272]DESAI C S.Disturbed state concept(DSC)for constitutive modeling of geologic materials and beyond[C]//Constitutive Modeling of Geomaterials.Berlin,2013:27-45.
    [273]GENS A,NOVA R.Conceptual bases for a constitutive model for bonded soils and weak rocks[C]//Geotechnical Engineering of Hard Soils-Soft Rocks.Athens,1993.
    [274]YU H S,TAN S M,SCHNAID F.A critical state framework for modelling bonded geomaterials[J].Geomechanics and Geoengineering:An International Journal,2007,2(1):61-74.
    [275]KAVVADAS M,AMOROSI A.A constitutive model for structured soils[J].Géotechnique,2000,50(3):263-273.
    [276]BAUDET B,STALLEBRASS S.A constitutive model for structured clays[J].Géotechnique,2004,54(4):269-278.
    [277]HUANG J T,AIREY D W.Effects of cement and density on an artificially cemented sand[C]//Geotechnical Engineering of Hard Soil-Soft Rocks.Rotterdam,1993:553-560.
    [278]LAGIOIA R,NOVA R.An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression[J].Géotechnique,1995,45(4):633-648.
    [279]ESTRADA N,TABOADA A.Yield surfaces and plastic potentials of cemented granular materials from discrete element simulations[J].Computers and Geotechnics,2013,49:62-69.
    [280]SCH?PFER M P J,CHILDS C,MANZOCCHI T.Three‐dimensional failure envelopes and the brittle‐ductile transition[J].Journal of Geophysical Research:Solid Earth,2013,118(4):1378-1392.
    [281]BORJA R I,AYDIN A.Computational modeling of deformation bands in granular media:I geological and mathematical framework[J].Computer Methods in Applied Mechanics and Engineering,2004,193(27/28/29):2667-2698.
    [282]CONSOLI N C,CRUZ R C,DA FONSECA A V,et al.Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2012,138(1):100-109.
    [283]姚仰平,余亚妮.基于统一硬化参数的砂土临界状态本构模型[J].岩土工程学报,2011,33(12):1827-1832.(YAO Yang-ping,YU Ya-ni.Extended critical state constitutive model for sand based on unified hardening parameter[J].Chinese Journal of Geotechnical Engineering,2011,33(12):1827-1832.(in Chinese))
    [284]LI X S,DAFALIAS Y F.Dilatancy for cohesionless soils[J].Géotechnique,2000,50(4):449-460.
    [285]SCHNAID F,PRIETTO P D,CONSOLI N C.Characterization of cemented sand in triaxial compression[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(10):857-868.
    [286]ALVARADO G,COOP M R,WILLSON S.On the role of bond breakage due to unloading in the behaviour of weak sandstones[J].Géotechnique,2012,62(4):303-316.
    [287]COOP M R,ATKINSON J H.The mechanics of cemented carbonate sands[J].Géotechnique,1993,43(1):53-67.
    [288]RIOS S,DA FONSECA A V,BAUDET B A.On the shearing behaviour of an artificially cemented soil[J].Acta Geotechnica,2014,9(2):215-226.
    [289]JIANG M J,ZHANG F G,THORNTON C.A simple three-dimensional distinct element modeling of the mechanical behavior of bonded sands[J].International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(16):1791-1820.
    [290]REDDY K R,SAXENA S K,BUDIMAN J S.Development of a true triaxiai testing apparatus[J].Geotechnical Testing Journal,1992,15(2):89-105.
    [291]苗天德,刘忠玉,任九生.湿陷性黄土的变形机理与本构关系[J].岩土工程学报,1999,21(4):383-387.(MIAOTian-de,LIU Zhong-yu,REN Jiu-sheng.Deformation mechanism and constitutive relation of collapsible loess[J].Chinese Journal of Geotechnical Engineering,1999,21(4):383-387.(in Chinese))
    [292]YANG C,CUI Y J,PEREIRA J M,et al.A constitutive model for unsaturated cemented soils under cyclic loading[J].Computers and Geotechnics,2008,35(6):853-859.
    [293]MIYAZAKI K,TENMA N,AOKI K,et al.A nonlinear elastic model for triaxial compressive properties of artificial methane-hydrate-bearing sediment samples[J].Energies,2012,5(10):4057-4075.
    [294]吴二林,韦昌富,魏厚振,等.含天然气水合物沉积物损伤统计本构模型[J].岩土力学,2013,34(1):60-65.(WUEr-lin,WEI Chang-fu,WEI Hou-zhen,et al.A statistical damage constitutive model of hydrate-bearing sediments[J].Rock and Soil Mechanics,2013,34(1):60-65.(in Chinese))
    [295]UCHIDA S,SOGA K,YAMAMOTO K.Critical state soil constitutive model for methane hydrate soil[J].Journal of Geophysical Research,2012,117:B03209.
    [296]ZHOU M,SOGA K,YAMAMOTO K.Upscaled anisotropic methane hydrate critical state model for turbidite hydrate‐bearing sediments at East Nankai Trough[J].Journal of Geophysical Research:Solid Earth,2018,123(8):6277-6298.
    [297]WAN R G,GUO P J.A simple constitutive model for granular soils:modified stress-dilatancy approach[J].Computers and Geotechnics,1998,22(2):109-133.
    [298]MASUI A,HANEDA H,OGATA Y,et al.Effects of methane hydrate formation on shear strength of synthetic methane hydrate sediments[C]//Proceedings of the 5th International Offshore,Polar Engineering Conference,2005:364-369.
    [299]BOLTON M D,GUI M W,GARNIER J,et al.Centrifuge cone penetration tests in sand[J].Géotechnique 1999,49(4):543-552.
    [300]蒋明镜,王新新.不同贯入倾角下TJ-1模拟月壤静力触探模型箱试验研究[J].岩土工程学报,2013,35(8):1442-1450.(JIANG Ming-jing,WANG Xin-xin.Investigation of TJ-1 lunar soil simulant cone penetration tests by calibration chamber under different penetration angles[J].Chinese Journal of Geotechnical Engineering,2013,35(8):1442-1450.(in Chinese))
    [301]刘松玉,邹海峰,蔡国军,等.基于CPTU的土分类方法在港珠澳大桥中的应用[J].岩土工程学报,2017,39(增刊2):1-4.(LIU Song-yu,ZOU Hai-feng,CAI Guo-jun,et al.Application of CPTU-based soil classification methods in Hong Kong-Zhuhai-Macao Bridge[J].Chinese Journal of Geotechnical Engineering,2017,39(S2):1-4.(in Chinese))
    [302]FALAGUSH O,MCDOWELL G R,YU H S.Discrete element modeling of cone penetration tests incorporating particle shape and crushing[J].International Journal of Geomechanics,2015,15(6):04015003.
    [303]JIANG M J,YU H S,HARRIS D.Discrete element modelling of deep penetration in granular soils[J].International Journal for Numerical and Analytical Methods in Geomechanics,2006,30(4):335-361.
    [304]JIANG M J,HARRIS D,ZHU H H.Future continuum models for granular materials in penetration analyses[J].Granular Matter,2007,9:97-108.
    [305]ARROYO M,BUTLANSKA J,GENS A,et al.Cone penetration tests in a virtual calibration chamber[J].Géotechnique,2011,61(6):525-531.
    [306]CIANTIA M O,ARROYO M,BUTLANSKA J,et al.DEMmodelling of cone penetration tests in a double-porosity crushable granular material[J].Computers and Geotechnics,2016,73:109-127.
    [307]FUNATSU T,HOSHINO T,SAWAE H,et al.Numerical analysis to better understand the mechanism of the effects of ground supports and reinforcements on the stability of tunnels using the distinct element method[J].Tunnelling and Underground Space Technology,2008,23(5):561-573.
    [308]CHEN R P,TANG L J,LING D S,et al.Face stability analysis of shallow shield tunnels in dry sandy ground using the discrete element method[J].Computers and Geotechnics,2011,38(2):187-195.
    [309]JIANG M J,YIN Z Y.Analysis of stress redistribution in soil and earth pressure on tunnel lining using the discrete element method[J].Tunnelling and Underground Space Technology,2012,32:251-259.
    [310]JIANG M J,YIN Z Y.Influence of soil conditioning on ground deformation during longitudinal tunneling[J].Comptes Rendus Mecanique,2014,342(3):189-197.
    [311]郑刚,崔涛,姜晓婷.砂土层中盾构隧道局部破坏引发连续破坏的机理研究[J].岩土工程学报,2015,37(9):1556-1571.(ZHENG Gang,CUI Tao,JIANG Xiao-ting.Mechanism of progressive collapse induced by partial failure of shield tunnels in sandy soil[J].Chinese Journal of Geotechnical Engineering,2015,37(9):1556-1571.(in Chinese))
    [312]ZHANG D M,GAO C P,YIN Z Y.CFD-DEM modeling of seepage erosion around shield tunnels[J].Tunnelling and Underground Space Technology,2019,83:60-72.
    [313]JIANG M J,SIMA J,CUI Y J,et al.Experimental investigation of the deformation characteristics of natural loess under the stress paths in shield tunnel excavation[J].International Journal of Geomechanics,2017,17(9):04017079.
    [314]XIANG Y Z,LIU H L,ZHANG W G,et al.Application of transparent soil model test and DEM simulation in study of tunnel failure mechanism[J].Tunnelling and Underground Space Technology,2018,74:178-184.
    [315]FANG Y S,ISHIBASHI I.Static earth pressures with various wall movements[J].Journal of Geotechnical Engineering,1986,112(3):317-333.
    [316]徐日庆,陈页开,杨仲轩,等.刚性挡墙被动土压力模型试验研究[J].岩土工程学报,2002,24(5):569-575.(XURi-qing,CHEN Ye-kai,YANG Zhong-xuan,et al.Experimental research on the passive earth pressure acting on a rigid wall[J].Chinese Journal of Geotechnical Engineering,2002,24(5):569-575.(in Chinese))
    [317]NIEDOSTATKIEWICZ M,LESNIEWSKA D,TEJCHMANJ.Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry[J].Strain,2011,47:218-231.
    [318]WIDULINSKI L,TEJCHMAN J,KOZICKI J,et al.Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall[J].International Journal of Solids and Structures,2011,48(7/8):1191-1209.
    [319]JIANG M J,HE J,WANG J F,et al.Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill[J].Granular Matter,2014,16(5):797-814.
    [320]NITKA M,TEJCHMAN J,KOZICKI J,et al.DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions[J].Granular Matter,2015,17(3):325-343.
    [321]SHIRE T,O’SULLIVAN C,HANLEY K J,et al.Fabric and effective stress distribution in internally unstable soils[J].Journal of Geotechnical and Geoenvironmental Engineering,2014,140(12):04014072.
    [322]SHIRE T,O'SULLIVAN C.A network model to assess base-filter combinations[J].Computers and Geotechnics,2017,84:117-128.
    [323]SKEMPTON A W,BROGAN J M.Experiments on piping in sandy gravels[J].Géotechnique,1994,44(3):449-460.
    [324]SCHOLTèS L,HICHER P Y,SIBILLE L.Multiscale approaches to describe mechanical responses induced by particle removal in granular materials[J].Comptes Rendus Mécanique,2010,338(10/11):627-638.
    [325]ABDOULAYE H,OUAHBI T,TAIBI S,et al.Analysis of mechanical behaviour and internal stability of granular materials using discrete element method[J].International Journal for Numerical and Analytical Methods in Geomechanics,2016,40(12):1712-1729.
    [326]KE L,TAKAHASHI A.Strength reduction of cohesionless soil due to internal erosion induced by one-dimensional upward seepage flow[J].Soils and Foundations,2012,52(4):698-711.
    [327]JIANG M J,MURAKAMI A.Distinct element method analyses of idealized bonded-granulate cut slope[J].Granular Matter,2012,14(3):393-410.
    [328]CROSTA G B,IMPOSIMATO S,RODDEMAN D.Numerical modeling of 2-D granular step collapse on erodible and nonerodible surface[J].Journal of Geophysical Research:Earth Surface,2009,114:F03020.
    [329]KATZ O,MORGAN J K,AHARONOV E,et al.Controls on the size and geometry of landslides:insights from discrete element numerical simulations[J].Geomorphology,2014,220:104-113.
    [330]HE X,LIANG D,BOLTON M D.Run-out of cut-slope landslides:mesh-free simulations[J].Géotechnique,2018,68(1):50-63.
    [331]AUSILIO E,CONTE E,DENTE G.Stability analysis of slopes reinforced with piles[J].Computers and Geotechnics,2001,28(8):591-611.
    [332]ZHANG G,WANG L P,WANG Y L.Pile reinforcement mechanism of soil slopes[J].Acta Geotechnica,2017,12(5):1035-1046.
    [333]XIANG B,ZHANG L M,ZHOU L R,et al.Field lateral load on slope-stabilization grouted pipe pile groups[J].Journal of Geotechnical and Geoenvironmental Engineering,2015,141(4):04014124.
    [334]HO I.Three-dimensional finite element analysis for soil slopes stabilisation using piles[J].Geomechanics and Geoengineering,2017,12(4):234-249.
    [335]SONG Y,ZHU Y,LIU W,et al.Experimental research on the mechanical properties of methane hydrate-bearing sediments during hydrate dissociation[J].Marine and Petroleum Geology,2014,51:70-78.
    [336]PANG W X,XU W Y,SUN C Y,et al.Methane hydrate dissociation experiment in a middle-sized quiescent reactor using thermal method[J].Fuel,2009,88(3):497-503.
    [337]ZHANG X H,LUO D S,LU X B,et al.Mechanical properties of gas hydrate-bearing sediments during hydrate dissociation[J].Acta Mechanica Sinica,2018,34(2):266-274.
    [338]JIANG M J,FU C,CUI L,et al.DEM simulations of methane hydrate exploitation by thermal recovery and depressurization methods[J].Computers and Geotechnics,2016,80(S1):410-426.
    [339]LIU F,JIANG M J,ZHU F Y.Discrete element analysis of uplift and lateral capacity of a single pile in methane hydrate bearing sediments[J].Computers and Geotechnics,2014,62:61-76.
    [340]JIANG M J,ZHU F Y,LIU F,et al.A bond contact model for methane hydrate‐bearing sediments with interparticle cementation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2014,38(17):1823-1854.
    [341]CRUTCHLEY G J,MOUNTJOY J J,PECHER I A,et al.Submarine slope instabilities coincident with shallow gas hydrate systems:insights from New Zealand examples[C]//The 7th International Symposium on Submarine Mass Movements and Their Consequences.Wellington,2016.
    [342]SUN Y,ZHANG X,WU S,et al.Relation of submarine landslide to hydrate occurrences in Baiyun Depression,South China Sea[J].Journal of Ocean University of China,2018,17(1):129-138.
    [343]BOURIAK S,VANNESTE M,SAOUTKINE A.Inferred gas hydrates and clay diapirs near the Storegga Slide on the southern edge of the V?ring Plateau,offshore Norway[J].Marine Geology,2000,163(1/2/3/4):125-148.
    [344]ZHANG X H,LU X B,SHI Y H,et al.Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation[J].Ocean Engineering,2015,105:1-9.
    [345]JIANG M J,SUN C,CROSTA G B,et al.A study of submarine steep slope failures triggered by thermal dissociation of methane hydrates using a coupled CFD-DEMapproach[J].Engineering Geology,2015,190:1-16.
    [346]MCKAY D S,CARTER J L,BOLES W W,et al.JSC-1:a new lunar soil simulant[J].American Society of Civil Engineers,1994,2(2):857-866.
    [347]ZHENG Y C,WANG S J,OUYANG Z Y,et al.CAS-1 lunar soil simulant[J].Advances in Space Research,2009,43(3):448-454.
    [348]JIANG M J,LI L Q,SUN Y G.Properties of TJ-1 lunar soil simulant[J].Journal of Aerospace Engineering,2012,25(3):463-469.
    [349]COSTES N C,COHRON G T,MOSS D C.Cone penetration resistance test-an approach to evaluating in-place strength and packing characteristics of lunar soils[C]//Proceedings of the Second Lunar Science Conference.1971:1973-1987.
    [350]MO P Q,GAO F,ZHOU G Q,et al.An experimental study on triaxial compression tests and cone penetration tests in planetary regolith simulant under low gravity fields[J/OL].Journal of Testing and Evaluation,DOI:10.1520/JTE20180005.
    [351]JIANG M J,LIU F,WANG H N,et al.Investigation of the effect of different gravity conditions on penetration mechanisms by the Distinct Element Method[J].Engineering Computations,2015,32(7):2067-2099.
    [352]JIANG M J,XI B L,LEI H Y.Investigation of gravity effect on penetration resistance in Tongji-1 lunar regolith simulant by centrifuge tests[J].Advances in Space Research,2018,62(5):945-956.
    [353]PERKINS S W,MADSON C R.Mechanical and load-settlement characteristics of two lunar soil simulants[J].Journal of Aerospace Engineering,1996,9(1):1-9.
    [354]JIANG M J,XI B L,DE BLASIO F V,et al.Physical model tests of the bearing behavior of Tongji-1 lunar soil simulant[J].Journal of Aerospace Engineering,2018,32(2):04018150.
    [355]KOBAYASHI T,OCHIAI H,SUYAMA Y,et al.Bearing capacity of shallow foundations in a low gravity environment[J].Soils and Foundations,2009,49(1):115-134.
    [356]LEE H R,PARK H J,KIM D S.Bearing capacity of shallow footings in simulated lunar environments using centrifuge tests[J].Journal of Geotechnical and Geoenvironmental Engineering,2018,144(7):04018042.
    [357]JIANG M J,DAI Y S,CUI L,et al.Soil mechanics-based testbed setup for lunar rover wheel and corresponding experimental investigations[J].Journal of Aerospace Engineering,2017,30(6):06017005.
    [358]KOBAYASHI T,FUJIWARA Y,YAMAKAWA J,et al.Mobility performance of a rigid wheel in low gravity environments[J].Journal of Terramechanics,2010,47(4):261-274.
    [359]NAKASHIMA H,KOBAYASHI T.Effects of gravity on rigid rover wheel sinkage and motion resistance assessed using two-dimensional discrete element method[J].Journal of Terramechanics,2014,53:37-45.
    [360]SKONIECZNY K,WETTERGREEN D S,WHITTAKERW L R.Advantages of continuous excavation in lightweight planetary robotic operations[J].The International Journal of Robotics Research,2016,35(9):1121-1139.
    [361]ZACNY K,CRAFT J,HEDLUND M,et al.Novel approaches to drilling and excavation on the moon[C]//American Institute of Aeronautics and Astronautics,SPACE2009 Conference and Exposition,2009:6431.
    [362]蒋明镜,奚邦禄,申志福,等.月壤水平开挖推剪阻力影响因素离散元数值分析[J].岩土力学,2016,37(1):229-236.(JIANG Ming-jing,XI Bang-lu,SHEN Zhi-fu,et al.Discrete element numerical analysis of factors affecting horizontal pushing resistance in lunar ground excavation[J].Rock and Soil Mechanics,2016,37(1):229-236.(in Chinese))
    [363]BOLES W W,SCOTT W D,CONNOLLY J F.Excavation forces in reduced gravity environment[J].Journal of Aerospace Engineering,1997,10(2):99-103.
    [364]JIANG M J,XI B L,ARROYO M,et al.DEM simulation of soil-tool interaction under extraterrestrial environmental effects[J].Journal of Terramechanics,2017,71:1-13.
    [365]SCAIONI M,YORDANOV V,BRUNETTI M T,et al.Recognition of landslides in lunar impact craters[J].European Journal of Remote Sensing,2017,51(1):47-61.
    [366]ZHENG H,HUANG Y.Model tests on flow slide of lunar regolith simulant[J].Environmental Earth Sciences,2015,73(8):4853-4859.
    [367]蒋明镜,廖优斌,陈有亮,等.三种环境下月壤削坡试验离散元分析[J/OL].郑州大学学报(理学版),DOI:10.13705/j.issn.1671-6841.2017369.(JIANG Ming-jing,LIAO You-bin,CHEN You-liang,et al.Distinct element analysis of the lunar soil cut slope test under three environmental conditions[J/OL].Journal of Zhengzhou University(Natural Science Edition),DOI:10.13705/j.issn.1671-6841.2017369.(in Chinese))
    [368]CIANTIA M O,CASTELLANZA R,Di PRISCO C.Experimental study on the water-induced weakening of calcarenites[J].Rock Mechanics and Rock Engineering,2015,48(2):441-461.
    [369]LIM S S,MARTIN C D,?KESSON U.In-situ stress and microcracking in granite cores with depth[J].Engineering Geology,2012,147-148:1-13.
    [370]石根华.数值流形方法与非连续变形分析[M].裴觉民,译.北京:清华大学出版社,1997.(SHI Gen-hua.Numericalmanifold method and discontinuous deformation analysis[M].PEI Jue-min,Tran.Beijing:Tsinghua University Press,1997.(in Chinese))
    [371]TANG C A.Numerical simulation of progressive rock failure and associated seismicity[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(2):249-261.
    [372]ZHOU X P,BI J,QIAN Q H.Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws[J].Rock Mechanics and Rock Engineering,2015,48(3):1097-1114.
    [373]ZHAO G F,FANG J N,ZHAO J.A 3D distinct lattice spring model for elasticity and dynamic failure[J].International Journal for Numerical and Analytical Methods in Geomechanics,2011,35(8):859-885.
    [374]ZHANG Q,ZHU H H,ZHANG L.Studying the effect of non-spherical micro-particles on Hoek-Brown strength parameter mi using numerical true triaxial compressive tests[J].International Journal for Numerical and Analytical Methods in Geomechanics,2015,39(1):96-114.
    [375]BOBET A,EINSTEIN H H.Fracture coalescence in rock-type material under uniaxial and biaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863-888.
    [376]WONG L N Y,EINSTEIN H H.Crack coalescence in molded gypsum and carrara marble:Part 1 macroscopic observations and interpretation[J].Rock Mechanics and Rock Engineering,2009,42(3):475-511.
    [377]YANG S Q,HUANG Y H.An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures[J].Environmental Earth Sciences,2017,76(10):364.
    [378]WONG R H C,CHAU K T.Crack coalescence in a rock-like material containing two cracks[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(2):147-164.
    [379]YANG S Q,JING H W,HUANG Y H,et al.Fracture mechanical behavior of red sandstone containing a single fissure and two parallel fissures after exposure to different high temperature treatments[J].Journal of Structural Geology,2014,69(Part A):245-264.
    [380]TANG C A,LIN P,WONG R H C,et al.Analysis of crack coalescence in rock-like materials containing three flaws:Part II numerical approach[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(7):925-939.
    [381]WU Z J,WONG L N Y.Frictional crack initiation and propagation analysis using the numerical manifold method[J].Computers and Geotechnics,2012,39:38-53.
    [382]LEE H,JEON S.An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J].International Journal of Solids and Structures,2011,48(6):979-999.
    [383]ZHANG X P,WONG L N Y.Cracking processes in rock-like material containing a single flaw under uniaxial compression:a numerical study based on parallel bonded-particle model approach[J].Rock Mechanics and Rock Engineering,2012,45(5):711-737.
    [384]BAHAADDINI M,SHARROCK G,HEBBLEWHITE B K.Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression[J].Computers and Geotechnics,2013,49:206-225.
    [385]HUANG Y H,YANG S Q,ZHAO J.Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures[J].Rock Mechanics and Rock Engineering,2016,49(12):4711-4729.
    [386]WU S C,XU X L.A study of three intrinsic problems of the classic discrete element method using flat-joint model[J].Rock Mechanics and Rock Engineering,2016,49(5):1813-1830.
    [387]JIANG M J,SUN C,RODRIGUEZ-DONO A,et al.Influence of time-dependence on failure of echelon rock joints through a novel DEM model[J].European Journal of Environmental and Civil Engineering,2015,19(S1):108-118.
    [388]JIANG M J,LIU J,CROSTA G.B,et al.DEM analysis of the effect of joint geometry on the shear behavior of rocks[J].Comptes Rendus Mécanique,2017,345(11):779-796.
    [389]SUN Z,ESPINOZA D N,BALHOFF M T.Reservoir rock chemo-mechanical alteration quantified by triaxial tests and implications to fracture reactivation[J].International Journal of Rock Mechanics and Mining Sciences,2018,106:250-258.
    [390]SHI Z M,JIANG T,JIANG M J,et al.DEM investigation of weathered rocks using a novel bond contact model[J].Journal of Rock Mechanics and Geotechnical Engineering,2015,7(3):327-336.
    [391]JIANG M J,LIU W W,LIAO Z W.A novel rock contact model considering water softening and chemical weathering effect[C]//Proceedings of the 7th International Conference on Discrete Element Methods.Singapore,2017:455-463.
    [392]JIANG M J,LIAO Z W,ZHANG,N,et al.Discrete element analysis of chemical weathering on rock[J].European Journal of Environmental and Civil Engineering,2015,19(S1):15-28.
    [393]廖兆文.水软化-化学风化作用下岩石劣化微观机理及岩质边坡稳定性离散元分析[D].上海:同济大学,2015.(LIAO Zhao-wen.DEM analysis of the micro-mechanical degradation behavior of water softening and chemical weathering on the rock and stability of rock slope[D].Shanghai:Tongji University,2015.(in Chinese))
    [394]WAGNER H,SCHüMANN E H R.The stamp-load bearing strength of rock an experimental and theoretical investigation[J].Rock Mechanics and Rock Engineering,1971,3(4):185-207.
    [395]COPUR H,OZDEMIR L,ROSTAMI J.Roadheader applications in mining and tunnelling[J].Mining Engineering,1998,50(3):38-42.
    [396]YANG H,LIU J,LIU B.Investigation on the cracking character of jointed rock mass beneath TBM disc cutter[J].Rock Mechanics and Rock Engineering,2018,51(4):1263-1277.
    [397]ROXBOROUGH F F,PHILLIPS H R.Rock excavation by disc cutter[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12(12):361-366.
    [398]GERTSCH R,GERTSCH L,ROSTAMI J.Disc cutting tests in Colorado Red Granite:implications for TBM performance prediction[J].International Journal of Rock Mechanics and Mining Sciences,2007,44(2):238-246.
    [399]CHO J W,JEON S,JEONG H Y,et al.Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement[J].Tunnelling and Underground Space Technology,2013,35:37-54.
    [400]GONG Q M,ZHAO J,JIAO Y Y.Numerical modeling of the effects of joint orientation on rock fragmentation by TBMcutters[J].Tunnelling and Underground Space Technology,2005,20(2):183-191.
    [401]MOON T,OH J.A study of optimal rock-cutting conditions for hard rock TBM using the discrete element method[J].Rock Mechanics and Rock Engineering,2012,45(5):837-849.
    [402]HUANG H,DETOURNAY E.Discrete element modeling of tool‐rock interaction:II rock?indentation[J].International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(13):1930-1947.
    [403]ZHOU X P,ZHAI S F,BI J.Two-dimensional numerical simulation of rock fragmentation by TBM cutting tools in mixed-face ground[J].International Journal of Geomechanics,2018,18(3):06018004.
    [404]CHANG S H,CHOI S W,BAE G J,et al.Performance prediction of TBM disc cutting on granitic rock by the linear cutting test[J].Tunnelling and Underground Space Technology,2006,21(3/4):271.
    [405]BEJARI H,HAMIDI J K.Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses[J].Rock Mechanics and Rock Engineering,2013,46(4):897-907.
    [406]MA H,YIN L,JI H.Numerical study of the effect of confining stress on rock fragmentation by TBM cutters[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(6):1021-1033.
    [407]YIN L J,GONG Q M,MA H S,et al.Use of indentation tests to study the influence of confining stress on rock fragmentation by a TBM cutter[J].International Journal of Rock Mechanics and Mining Sciences,2014,72:261-276.
    [408]PAN Y C,LIU Q S,LIU J P,et al.Full-scale linear cutting tests in Chongqing sandstone to study the influence of confining stress on rock cutting forces by TBM disc cutter[J].Rock Mechanics and Rock Engineering,2018,51(6):1697-1713.
    [409]LIU J,WANG J.The effect of indentation sequence on rock breakages:a study based on laboratory and numerical tests[J].Comptes Rendus Mécanique,2018,346(1):26-38.
    [410]JIANG M J,TAN Y F O,ZHANG F G,et al.Distinct element modeling of rock fragmentation by TBMcutter[J/OL].European Journal of Environmental and Civil Engineering,DOI:10.1080/19648189.2018.1498396.
    [411]JIANG M J,LIAO Y W,WANG H N,et al.Distinct element method analysis of jointed rock fragmentation induced by TBM cutting[J].European Journal of Environmental and Civil Engineering,2017,22(S1):1-20.
    [412]廖优斌.深部复合地层下TBM破岩过程及隧道开挖离散元分析[D].上海:上海理工大学,2018.(LIAO You-bin.DEM investigation on the mixed rock fragmentation mechanism under TBM driving and the stability evolution of deeply-situated mixed rock mass after TBM excavation[D].Shanghai:University of Shanghai for Science and Technology,2018.(in Chinese))
    [413]GOODMAN R E,BRAY J W.Toppling of rock slopes[C]//Proceeding of the Specialty Conference on Rock Engineering for Foundations and Slopes.Colorado,1976:201-233.
    [414]LIAN J J,LI Q,DENG X F,et al.A Numerical study on toppling failure of a jointed rock slope by using the distinct lattice spring model[J].Rock Mechanics and Rock Engineering,2018,51(2):513-530.
    [415]JAEGER J C.Friction of rocks and stability of rock slopes[J].Géotechnique,1971,21(2):97-134.
    [416]WONG L N Y,WU Z.Application of the numerical manifold method to model progressive failure in rock slopes[J].Engineering Fracture Mechanics,2014,119(3):1-20.
    [417]ZHAO Z H,GUO T C,NING Z Y,et al.Numerical modeling of stability of fractured reservoir bank slopes subjected to water-rock interactions[J].Rock Mechanics and Rock Engineering,2017,51(8):2517-2531.
    [418]CHEN Z Y,GONG W J,MA G W,et al.Comparisons between centrifuge and numerical modeling results for slope toppling failure[J].Science China Technological Sciences,2015,58(9):1497-1508.
    [419]刘笋.岩质边坡稳定极限平衡分析法与离散元法对比研究[D].南京:河海大学,2017.(LIU Sun.Analysis of rock slope stability with limit equilibrium method and distinct element method[D].Nanjing:Hohai University,2017.(in Chinese))
    [420]ZHANG N,HE M,ZHANG B,et al.Pore structure characteristics and permeability of deep sedimentary rocks determined by mercury intrusion porosimetry[J].Journal of Earth Science,2016,27(4):670-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700