用户名: 密码: 验证码:
雅江流域干热河谷不同植被类型对土壤可蚀性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Different Vegetation Types on Soil Erosivity in Dry and Hot Valley of Yajiang River Basin
  • 作者:张鹏 ; 姚甜甜 ; 喻武 ; 万丹 ; 叶红
  • 英文作者:Zhang Peng;Yao Tiantian;Yu Wu;Wan Dan;Ye Hong;College of Resources and Environment,Tibet Agricultural and Animal Husbandry University;Alpine-Cold Region Water and Soil Conservation Research Center,Tibet Agricultural and Animal Husbandry University;
  • 关键词:雅江流域 ; 干热河谷 ; 不同植被类型 ; 可蚀性K值 ; EPIC模型
  • 英文关键词:Yajiang River basin;;dry and hot valley;;different vegetation types;;soil erodibility K value;;EPIC model
  • 中文刊名:YNLX
  • 英文刊名:Journal of Southwest Forestry University(Natural Sciences)
  • 机构:西藏农牧学院资源与环境学院;西藏农牧学院高寒水土保持研究中心;
  • 出版日期:2019-06-28
  • 出版单位:西南林业大学学报(自然科学)
  • 年:2019
  • 期:v.39;No.152
  • 基金:水利部水土保持植物开发管理中心资助项目(2017-zg-zx-57)资助;; 西藏农牧学院水土保持创新人才基地项目资助
  • 语种:中文;
  • 页:YNLX201904003
  • 页数:9
  • CN:04
  • ISSN:53-1218/S
  • 分类号:15-23
摘要
选取雅江干热河谷地带的巨柏群落、高山松群落、砂生槐群落、铁杆蒿4种典型植被,采集植被下0~20 cm土壤,对土壤可蚀性及其影响因素进行分析,并对其土壤可蚀性和物理性质进行相关性分析。结果表明:各植被类型下的土壤容重呈极显著差异,土壤主要以粉粒、砂粒为主,有机质含量为20.19~37.99 g/kg;土壤机械稳定性团聚体中,以<0.25 mm粒径所占比例最大,经湿筛后,团聚体以>0.25 mm粒级为主,团聚体破坏率在17.03%~24.95%。研究区土壤可蚀性K值分布范围在0.156 3~0.223 0,由大到小依次表现为:砂生槐>高山松>巨柏>铁杆蒿。土壤可蚀性与黏粒含量、粉粒含量呈极显著正相关,与砂粒含量呈极显著负相关,与总孔隙度、毛管孔隙度呈显著负相关,与非毛管孔隙度呈显著正相关。
        Four species of typical vegetation of Cupressus gigantean community, Pinus densata community,Sophora moorcroftiana community and Artemisia sacrorum community in the dry heat valley of Yajiang River were selected. The soil of 0-20 cm under the vegetation was collected, and the soil erodibility and its influencing factors were analyzed, and the correlation between soil erodibility and physical properties was analyzed.Results show that soil bulk density under each vegetation type is extremely significant. The soil is mainly composed of silt and sand, and the organic matter content is 20.19-37.99 g/kg. The proportion of particle size less than 0.25 mm is the largest in the mechanical stable aggregates of soil. The particle size of most wet-screened aggregate is larger than 0.25 mm, and the destruction rate is 17.03%-24.95%.The soil erodibility K value distribution ranged from0.156 3 to 0.223 0 in the study area, the order is sand sorghum> alpine pine> giant cypress> iron stalk. Soil erodibility is significantly positively correlated with clay content and particle content, and is significantly negatively correlated with sand content, negatively correlate with total porosity and capillary porosity, and positively correlate with non-capillary porosity.
引文
[1]张科利,蔡永明,刘宝元,等.土壤可蚀性动态变化规律研究[J].地理学报,2001,56(6):673-681.
    [2]李月臣,刘春霞,赵纯勇,等.三峡库区(重庆段)土壤侵蚀敏感性评价及其空间分异特征[J].生态学报,2009,29(2):788-796.
    [3]李春梅,汪美华,王红亚.贵州麦岗水库沉积物的矿物磁性特征及其土壤侵蚀意义[J].地理研究,2010,29(11):1971-1980.
    [4]刘吉峰,李世杰,秦宁生,等.青海湖流域土壤可蚀性K值研究[J].干旱区地理,2006,29(3):321-326.
    [5]刘斌涛,陶和平,史展,等.青藏高原土壤可蚀性K值的空间分布特征[J].水土保持通报,2014,34(4):11-16.
    [6]Wischmeier W H,Smith D D.A universal soil loss equation to guide conservation farm planning[J].Trans7th International Cong.Soil Sci,1960,I:418-425.
    [7]Wischmeier W H.Use and misused of the universal soil loss equation[J].Journal of Soil and Water Conservation,1976,3l(1):5-9.
    [8]Meyer L D.Evolution of the Universal Soil Loss Equation[J].Journal of Soil and Water Conservation,1984,39(2):99-104.
    [9]Renard K G,Foster G R,Weesies G A,et al.Predicting soil erosion by water:a guide to conservation planning with the Revised Universal Soil Loss Equation(RUSLE)[Z].Agricultural Handbook,1997.
    [10]Nearing M A,Foster G R,Lane L J,et al.A processbased soil erosion model for USDA-water erosion prediction project technology[J].Transactions of the AS-AE,1989,32(5):1587-1593.
    [11]Liu B Y,Nearing M A,Baffaut C,et al.The WEPPwatershed model:III.Comparisons to measured data from small watersheds[J].Transactions of the ASAE,1997,40(4):945-952.
    [12]Sharpley A N,Williams J R.EPIC-Erosion/Productivity Impact Calculator:2.User Manual[Z].Washington,DC:US Department of Agriculture Technical Bulletin No.1768.
    [13]林芳,朱兆龙,曾全超,等.延河流域3种土壤可蚀性K值估算方法比较[J].土壤学报,2017,54(5):1136-1146.
    [14]Larsen I J,MacDonald L H.Predicting postfire sediment yields at the hillslope scale:Testing RUSLE and Disturbed WEPP[J].Water Resources Research,2007,43(11):W11412.
    [15]Ochoa P A,Fries A,Mejía D,et al.Effects of climate,land cover and topography on soil erosion risk in a semiarid basin of the Andes[J].Catena,2016,140:31-42.
    [16]Auerswald K,Fiener P,Martin W,et al.Use and misuse of the K factor equation in soil erosion modeling:An alternative equation for determining USLE nomograph soil erodibility values[J].Catena,2014,118:220-225.
    [17]范兰,吕昌河,陈朝.EPIC模型及其应用[J].地理科学进展,2012,31(5):584-592.
    [18]王小丹,钟祥浩,王建平.西藏高原土壤可蚀性及其空间分布规律初步研究[J].干旱区地理,2004,27(3):343-346.
    [19]梁博,聂晓刚,万丹,等.喜马拉雅山脉南麓典型林地对土壤理化性质及可蚀性K值影响[J].土壤学报,2018(06):1-12.
    [20]董莉丽,郑粉莉.土地利用类型对土壤微生物量和有机质的影响[J].水土保持通报,2009,29(6):10-15.
    [21]苏学军,段国玺,彭兴阶,等.西藏乃东-米林地区雅鲁藏布江结合带的地质特征及构造演化[J].地质通报,2006,25(6):700-707.
    [22]李奋其,李益多,张士贞,等.西藏朗县地区增生楔杂岩带90Ma岛弧型深成岩浆活动和意义[J].中国地质,2016,43(1):142-152.
    [23]郑维列,薛会英,罗大庆,等.巨柏种群的生态地理分布与群落学特征[J].林业科学,2007,43(12):8-15.
    [24]中国林业科学研究院林业研究所土壤研究室.森林土壤样品的采集与制备:LY/T 1210-1999[S].北京:中国标准出版社,1999.
    [25]Williams J R,Renard K G,Dyke P T.EPIC:a new method for assessing erosion’s effect on soil productivity[J].Journal of Soil&Water Conservation,1983,38(5):381-383.
    [26]Wischmeier W H,Johnson C B.A soil erodibility:graph for farmland and conservation sites[J].Journal of Soil and Water Conservation,1971,26(5):189-193.
    [27]黄晓强,赵云杰,信忠保,等.北京山区典型土地利用方式对土壤理化性质及可蚀性的影响[J].水土保持研究,2015,22(1):5-10.
    [28]王清奎,汪思龙,冯宗炜,等.杉木人工林土壤有机质研究[J].应用生态学报,2004,15(10):1947-1952.
    [29]Liu B H,Xu M,Henderson M,et al.Taking China’s temperature:daily range,warming trends,and regional variations,1955-2000[J].Journal of Climate,2004,17(22):4453-4462.
    [30]赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水土保持学报,2002,16(4):119-122,94.
    [31]Brejda J J,Moorman T B,Karlen D L,et al.Identification of regional soil quality factors and indicators[J].Soil Science Society of America Journal,2000,64(6):2115.
    [32]王丽,梦丽,张金池,等.不同植被恢复模式下矿区废弃地土壤水分物理性质研究[J].中国水土保持,2010(3):54-58.
    [33]姜培坤,周国模,钱新标.侵蚀型红壤植被恢复后土壤养分含量与物理性质的变化[J].水土保持学报,2004,18(1):12-14,30.
    [34]黄昌勇.土壤学[M].北京:中国农业出版社,2000:66-80.
    [35]Bouyoucos G J.The clay ratio as a criterion of susceptibility of soils to erosion1[J].Agronomy Journal,1935,27(9):738.
    [36]史东梅,陈正发,蒋光毅,等.紫色丘陵区几种土壤可蚀性K值估算方法的比较[J].北京林业大学学报,2012,34(1):32-38.
    [37]朱明勇,淑端,顾胜,等.湖北丹江口水库库区小流域土壤可蚀性特征[J].土壤通报,2010,42(2):434-436.
    [38]曾全超,董扬红,李鑫,等.基于Le Bissonnais法对黄土高原森林植被带土壤团聚体及土壤可蚀性特征研究[J].中国生态农业学报,2014,22(9):1093-1101.
    [39]邓良基,侯大斌,王昌全,等.四川自然土壤和旱耕地土壤可蚀性特征研究[J].中国水土保持,2003(7):23-25.
    [40]吴昌广,曾毅,周志翔,等.三峡库区土壤可蚀性K值研究[J].中国水土保持科学,2010,8(3):8-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700