用户名: 密码: 验证码:
气泡在煤炭表面的碰撞和黏附过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Collision and adhesion process of air bubbles on coal surface
  • 作者:李国胜 ; 韩加展 ; 邓丽君 ; 曹亦俊 ; 冉进财 ; 王军超
  • 英文作者:LI Guo-sheng;HAN Jia-zhan;DENG Li-jun;CAO Yi-jun;RAN Jin-cai;WANG Jun-chao;School of Chemical Engineering and Technology,China University of Mining and Technology;National Engineering Research Center of Coal Preparation and Purification;
  • 关键词:煤炭 ; 浮选 ; 表面润湿性 ; 气泡矿化 ; 三相接触周边
  • 英文关键词:coal;;flotation;;surface wettability;;bubble mineralization;;three phase contact perimeter
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:中国矿业大学化工学院;国家煤加工与洁净化工程技术研究中心;
  • 出版日期:2016-11-15
  • 出版单位:煤炭学报
  • 年:2016
  • 期:v.41;No.266
  • 基金:国家自然科学基金资助项目(51504254,51274198);; 中央高校基本科研业务费专项资金资助项目(2015XKMS039)
  • 语种:中文;
  • 页:MTXB201611025
  • 页数:6
  • CN:11
  • ISSN:11-2190/TD
  • 分类号:195-200
摘要
煤泥浮选中,煤的可浮性与其表面润湿性质密切相关,选用表面润湿性差异较大的褐煤和焦煤为对象,研究气泡与煤炭表面碰撞过程中的三相接触周边的形成过程。分析了两种煤炭界面性质的差异,并采用I-SPEED 3高速动态摄像机记录并分析气泡与煤炭表面碰撞和黏附的微观过程。结果表明,在一定的碰撞速度条件下,气泡和煤炭表面要经过"接触—弹回—再接触"的数次碰撞过程,并最终形成气液固三相接触周边。焦煤表面与气泡经过2次碰撞后形成的铺展面积为8.2 mm~2,而褐煤表面的三相接触周边形成之前经过了3次碰撞,且气泡在其表面的最终铺展面积为4.6 mm~2。煤炭表面的接触角越大,三相接触周边形成的时间就越短,气泡在煤炭表面的铺展面积也越大,这从微观角度验证了浮选过程中煤炭表面疏水性对气泡矿化过程的影响。
        In slime flotation,the flotation of coal is closely related to its surface wettability. In this paper,the lignite and coking coals with different surface wettability are investigated. The formation process of the three phases contact during the collision between bubble and coal surface is studied. First,the differences of the two kinds of coal interface properties are analyzed. At the same time,the I-SPEED 3 high speed dynamic camera is used to record and analyze the micro process of the collision and adhesion between air bubble and coal surface. Results show that under a certain condition of collision velocity,the bubble and coal surface should go through several collision process,contact-bounce-contact,and finally form the gas-liquid-solid three phase contact periphery. Three-phase contact surrounding is formed in the coking coal surface with bubble after the second collision,and the area is 8. 2 mm2. Three-phase contact surrounding is formed after 3 times of collision in the surface of lignite,and the bubble in coal surface spreading area is 4. 6mm2. The greater contact angle of coal surface is,the shorter the three-phase contact formed around the time will be,and the greater bubble in the spreading area of coal surface will be. From the microscopic point of view,the effect of surface hydrophobicity of coal on the process of bubble mineralization is verified.
引文
[1]潘光,黄桥高,胡海豹,等.微观结构对超疏水表面润湿性的影响[J].高分子材料科学与工程,2010,26(7):163-166.Pan Guang,Huang Qiaogao,Hu Haibao,et al.Wettability of superhydrophobic surface through turning microcosmic structure[J].Polymer Materials Science and Engineering,2010,26(7):163-166.
    [2]石辉,王会霞,李秧秧.植物叶表面的润湿性及其生态学意义[J].生态学报,2011,31(15):4287-4298.Shi Hui,Wang Huixia,Li Yangyang.Wettability on plant leaf suefaces and its ecological significance[J].Journal of Ecology,2011,31(15):4287-4298.
    [3]范桂侠,曹亦俊,张峰伟.微细粒钛铁矿和钛辉石的表面润湿性与自由能[J].中国矿业大学学报,2014,43(6):1051-1057.Fan Guixia,Cao Yijun,Zhang Fengwei.Investigation on the surface wettability and surface free energy of micro fine ilmenite and titanaugite[J].Journal of China University of Mining and Technology,2014,43(6):1051-1057.
    [4]赵振宝,杨晨,孙春燕,等.煤尘润湿性的实验研究[J].煤炭学报,2011,36(3):442-446.Zhao Zhenbao,Yang Chen,Sun Chunyan,et al.Expermental study on coal dust wettability[J].Journal of China Coal Society,2011,36(3):442-446.
    [5]解兴智,傅贵.煤润湿性测量方法的探讨[J].煤炭科学技术,2004,32(2):65-68.Jie Xingzhi,Fu Gui.Discussion on coal wetability measuring method[J].Coal Science and Technology,2004,32(2):65-68.
    [6]邹文杰,曹亦俊,刘炯天.煤表面热力学特性的Washbure动态法测试[J].煤炭学报,2013,38(7):1271-1276.Zou Wenjie,Cao Yijun,Liu Jiongtian.Surface themodynamic characterization of fine coal by Washburn dynamic method[J].Journal of China Coal Society,2013,38(7):1271-1276.
    [7]Krasowska M,Zawala J,Malysa K.Air at hydrophobic surface and kinetics of three phase contact formation[J].Advances in Colloid and Interface Science,2009,147-148:155-169.
    [8]Niecikowska A,Zawala J,Miller R,et al.Dynamic adsorption layer formation and time of bubble attachment to a mica surface in solution of cationic surfactants(CnTABr)[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2010,365(1-3):14-20.
    [9]Chi M P,Anh V N,Geoffrey M E.Combing hydrodynamics and molecular kinetics to predict dewetting between a small bubble and a soild surface[J].Journal of Colloid and Interface Science,2006,296(2):669-676.
    [10]Robert A H,John R.Forced liuquid movement on low energy surface[J].Journal of Colloid and Interface Science,1993,159(2):429-438.
    [11]Hansjochim S,Anh V N.Dewetting kinetics between a gas bubble and a flat solid surface and the effect of three-phase solid-gas-liquid contact line tension[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,142(2-3):257-276.
    [12]Gunka Volodymyr,Pyshyev Serhiy.Lignite oxidative desulphuriztion[J].International Journal of Coal Science&Technology,2014,1(1):62-69.
    [13]Ni Mingjiang,Li Chao,Fang Mengxiang,et al.Researsh on coal staged conversion poly-genertion system based on fluidized bed[J].International Journal of Coal Science&Technology,2014,1(1):39-45.
    [14]Tao Xiuxiang,Xu Ning,Xie Maohua,et al.Progress of the technique of coal microwave desulfurization[J].International Journal of Coal Science&Technology,2014,1(1):113-128.
    [15]朱学栋,朱子彬,韩崇家,等.煤中含氧官能团的红外光谱定量分析[J].燃料化学学报,1999,29(4):335-339.Zhu Xuedong,Zhu Zibin,Han Chongjia,et al.Quantitative determination of oxygen-containing functional groups in coal by ftir spectroscopy[J].Journal of Fuel Chemistry and Technology,1999,29(4):335-339.
    [16]张双全,吴国光.选矿学[M].徐州:中国矿业大学出版社,2012:126-128.Zhang Shuangquan,Wu Guoguang.Coal chemistry[M].Xuzhou:China University of Mining and Technology Process,2012:126-128.
    [17]Krasowska M,Malysa K.Wettings films in attachment of the colliding bubble[J].Advances in Colloid and Interface Science,2007,31(134-135):138-150.
    [18]Kosior D,Zawala J,Malysa K.Influence of n-octanol on the bubble impact velocity,bouncing and the three phase contant formation at hydrophobicsolid surface[J].Colloids and Surfances A:Physicochem and Engineering Aspects,2014,441(20):788-795.
    [19]张凡凡.基于高速动态显微测试的气泡矿化研究[D].徐州:中国矿业大学,2015:6.Zhang Fanfan.Research of bubbles mineralization based on highspeed dynamic microscopic test[D].Xuzhou:China University of Mining and Technology,2015:6.
    [20]樊晓鹏,刘开平,谭晨曦,等.浮选气泡矿化机理研究[J].矿业快报,2005,433(7):12-14.Fan Xiaopeng,Liu Kaiping,Tan Chenxi,et al.Research on mineralization mechanism of flotation bubble[J].Express Information of Mining Industry,2005,433(7):12-14.
    [21]Starov V M,Churaev N V.Wetting films on local heterogeneous surface:hydrophilic surface with hydrophobic spots[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,156(1-3):243-248.
    [22]Diakova B,Filiatre C,Platikanov D,et al.Thin wetting films fromaqueous electrolyte solutions on SIC/SI water[J].Advence in Colloid and Interface Science,2002,96(1-3):193-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700