用户名: 密码: 验证码:
自泵送流体动静压型机械密封自清洁性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Self-Cleaning for Self-Pumping Hydrodynamic and Hydrostatic Mechanical Seal
  • 作者:陈群 ; 孙见君
  • 英文作者:CHEN Qun;SUN Jianjun;College of Mechanical and Electrical Engineering,Nanjing Forestry University;
  • 关键词:数值模拟 ; 流体计算力学 ; 机械密封 ; 自清洁性 ; 颗粒
  • 英文关键词:numerical simulation;;CFD;;mechanical seal;;self-cleaning;;particle
  • 中文刊名:MCXX
  • 英文刊名:Tribology
  • 机构:南京林业大学机械电子工程学院;
  • 出版日期:2019-06-03 15:03
  • 出版单位:摩擦学学报
  • 年:2019
  • 期:v.39;No.191
  • 基金:国家重点研发计划项目(2018YFB2000800)资助~~
  • 语种:中文;
  • 页:MCXX201903001
  • 页数:10
  • CN:03
  • ISSN:62-1095/O4
  • 分类号:3-12
摘要
流体楔入式非接触机械密封在流体动压的形成过程中,为防止流体中固体颗粒对密封端面的损伤,需增设辅助系统以提供洁净的阻塞流体,这增加了密封初期建设和维护周期成本.针对一种新型的泵出式自泵送流体动压型机械密封,应用Fluent中Laminar模型和DPM模型仿真研究了其在不同颗粒直径、转速、压差、液膜厚度和颗粒体积浓度下的自清洁特性.结果表明:排屑率整体上随着颗粒体积浓度增大而减小;当颗粒体积浓度足够低时,排屑率均会达到60%以上;随着颗粒直径增大,排屑率先增大后减小,在直径0.7μm时排屑最高达79.35%.;随着转速增大,排屑率先下降后显著上升,在计算的0~6 000 r/min范围内排屑率达到94%;排屑率受液膜厚度和压差影响较小.
        In the process of forming hydrodynamic pressure,it is necessary for fluid-wedge and non-contacting mechanical seal to prepare for an auxiliary systems to provide a clean blocking fluid,which is aimed to prevent damage to the sealing end face by solid particle in the fluid. For the pump-out self-pumping fluid dynamic mechanical seal,the self-cleaning characteristics with particle diameter,rotation speed,pressure,liquid film thickness and particle volume concentration were studied by using the DPM model and the Laminar model in Fluent. The results show that the increase of volume concentration decreased the particle chip removal rate. As the particle volume concentration was low enough,the chip removal rate was hiigher than 60%. As the particle diameter increased,the chip removal rate firstly increased and then decreased. When the diameter was 0.7 μm,the chip removal was up to 79.35%. As the rotation speed increased,the chip removal rate decreased firstly and then increased significantly. The chip removal rate was 94% in the calculated range of 0~6 000 r/min. The seal pressure difference and the liquid film thickness had no obvious effect on particle chip removal rate
引文
[1]Pecht Glenn G.Non-contacting,gap-type seal having a ring with a patterned micro dam seal face[P]:US:5090712(A).1992-02-25.
    [2]Song Pengyun,Chen Kuangmin,Dong Zongyu,et al.Research progress on slotted mechanical seal technology[J].Chemical Engineering&Machinery,1999,(2):110-115(in Chinese)[宋鹏云,陈匡民,董宗玉,等.端面开槽机械密封技术研究进展[J].化工机械,1999,(2):110-115].
    [3]Peng Xudong,Huyan Chenlong,et al.Design of a biomorphic groove dry gas seal based on bird wing outlines[J].Tribology,2012,32(6):563-569(in Chinese)[彭旭东,呼延晨龙,等.基于鸟翼轮廓的干式气体密封仿生型槽设计[J].摩擦学学报,2012,32(6):563-569].doi:10.16078/j.tribology.2012.06.008.
    [4]Miller Brad A,Green Itzhak.Numerical formulation for the dynamic analysis of spiral-grooved gas face seals[J].Tribology Transactions,2001,123(2):395-403.doi:10.1115/1.1308015.
    [5]Ding Xuexing,Lu Junjie,Zhang Weizheng,et al.Comparison of two optimized groove shapes and performance for upstream pumping mechanical seals[J].Journal of Lanzhou University of Technology,2015,41(6):74-78(in Chinese)[丁雪兴,陆俊杰,张伟政,等.上游泵送机械密封两种优化槽形及性能的对比[J].兰州理工大学学报,2015,41(6):74-78].doi:10.3969/j.issn.1673-5196.2015.06.015.
    [6]Shahin I,Gadala M,Alqaradawi M,et al.Three dimensional computational study for spiral dry gas seal with constant groove depth and different tapered grooves[J].Procedia Engineering,2013,68:205-212.doi:10.1016/j.proeng.2013.12.169.
    [7]Jiang Jinbo,Peng Xudong,Bai Shaoxian,et al.Performance analysis and selection of a bionic bird wing multi-array spiral groove dry gas seal[J].Tribology,2015,35(3):274-281(in Chinese)[江锦波,彭旭东,白少先,等.仿鸟翼微列螺旋槽干气密封性能分析与选型[J].摩擦学学报,2015,35(3):274-281].doi:10.16078/j.tribology.2015.03.005.
    [8]Wang Yan,Sun Jianjun,Hu Qiong,et al.Numerical analysis of gas seal flow orderliness based microstructure modeling[J].Tribology,2018,38(6):673-683(in Chinese)[王衍,孙见君,胡琼,等.基于微尺度造型的干气密封流动有序性数值分析[J].摩擦学学报,2018,38(6):673-683].doi:10.16078/j.tribology.2018098.
    [9]Mcnickle A D,Etsion I.Near-contact laser surface textured dry gas seals[J].Tribology Transactions,2004,126(4):788-794.doi:10.1115/1.1792695.
    [10]Lebeck A O.Experiments and modeling of zero leakage backward pumping mechanical face seals[J].Tribology Transactions,2008,51(4):389-395.doi:10.1080/10402000802121650.
    [11]Wang Yuming,Wang Jianli,Yang Huixia,et al.Theoretical analyses and design guidelines of oil-film-lubricated mechanical face seals with spiral grooves[J].Tribology Transactions,2004,47(4):537-542.doi:10.1080/05698190490500743.
    [12]Wang Yuming,Yang Huixia,Wang Yading,et al.Experimental investigations and field applications of oil-film-lubricated face seals with spiral grooves[J].Tribology Transactions,2005,48(4):589-596.doi:10.1080/05698190590948232.
    [13]Wang Yuming,Yang Huixia,Wang Jianli,et al.Theoretical analyses and field applications of gas-film lubricated mechanical face seals with herringbone spiral grooves[J].Tribology Transactions,2009,52(6):800-806.doi:10.1080/10402000903115445.
    [14]Li Zhentao,Wang Yuanlei,Hao Muming,et al.Cavitation experiment and performance analysis of downstream pumping spiral groove seals[J].Tribology,2017,37(6):743-755(in Chinese)[李振涛,王赟磊,郝木明,等.下游泵送螺旋槽密封空化试验及性能分析[J].摩擦学学报,2017,37(6):743-755].doi:10.16078/j.tribology.2017.06.005.
    [15]Lawrence P,Ludwing,Thomas N Strom,et al.Spiral groove seal[P]:US:3782737.1974-1-1.
    [16]Sun Jianjun,Wang Min,Zhou Min,et al.Self-pumping fluid dynamic pressure type mechanical seal[P].China:CN103267132A,2013-08-28(in Chinese)[孙见君,王敏,周敏,等.自泵送流体动压型机械密封[P].中国:CN103267132A,2013-08-28].
    [17]Zhou Min,Sun Jianjun,Ma Chenbo,et al.Analysis of self-pumped hydrodynamic mechanical seal performance[J].CIESC Journal,2015,66(2):687-694(in Chinese)[周敏,孙见君,马晨波,等.自泵送流体动压型机械密封性能分析[J].化工学报,2015,66(2):687-694].
    [18]Sun JianJun,Ma ChenBo,Yu QiuPing,et al.Numerical analysis on a new pump-out hydrodynamic mechanical seal[J].Tribology International,2017,106:62-70.doi:10.1016/j.triboint.2016.10.033.
    [19]Gu Dongsheng,Sun Jianjun,Ma Chenbo,et al.Orthogonal test of self-pumping mechanical seal based on numerical simulation[J].CIESC Journal,2015,66(7):2464-2473(in Chinese)[顾东升,孙见君,马晨波,等.基于数值模拟的自泵送机械密封正交试验[J].化工学报,2015,66(7):2464-2473].
    [20]Lu Jianhua,Sun Jianjun,Chen Wei,et al.Performance comparison of self-pumping and spiral groove mechanical seals[J].CIESCJournal,2016,67(10):4370-4377(in Chinese)[陆建花,孙见君,陈卫,等.自泵送机械密封与螺旋槽机械密封的性能比较[J].化工学报,2016,67(10):4370-4377].
    [21]Yan Yan,Chen Wei,Sun Jianjun,et al.Numerical simulation of sealing performance for two-way self-pumping hydrodynamic and hydrostatic mechanical seal[J].Journal of Drainage and Irrigation Machinery Engineering,2017,35(8):692-699(in Chinese)[严彦,陈卫,孙见君,等.双向自泵送流体动静压型机械密封性能数值模拟[J].排灌机械工程学报,2017,35(8):692-699].
    [22]Hu Jibin,Tao Wenjin,Zhao Yimin,et al.Numerical analysis of general groove geometry for dry gas seals[J].Applied Mechanics and Materials,2014,457:544-551.doi:10.4028/www.scientific.net/AMM.457-458.544.
    [23]Wang Qiang,Chen Huilong.Research on performance of upstream pumping mechanical seal with different deep spiral groove//IOPconference series:Earth and environmental science[C].IOPPublishing,2012,15(7):072019-072027.doi:10.1088/1755-1315/15/7/072019
    [24]Hu Guokun,Li Zhenbei.ANSYS ICEM CFD detailed engineering examples[M].Beijing:People Post Press,2014:207-208(in Chinese)[胡国坤,李振北.ANSYS ICEM CFD工程实例详解[M].北京:人民邮电出版社,2014:207-208].
    [25]Brunetiere N,Tournerie B,Frene J.Influence of fluid flow regime on performances of non-contacting liquid face seals[J].Tribology Transactions,2002,124(3):515-523.doi:10.1115/1.1456453.
    [26]Ding Xuexing,Fu Yingjie,Zhang Jing,et al.Analysis of flow field on spiral groove dry gas seal face based on CFD[J].Journal of Drainage and Irrigation Machinery Engineering,2010,28(4):330-334(in Chinese)[丁雪兴,富影杰,张静,等.基于CFD的螺旋槽干气密封端面流场流态分析[J].排灌机械工程学报,2010,28(4):330-334].
    [27]Li Fengxiang,Yan Hua,Ding Yumei,et al.Characteristic length in tube flow turbulence heat transfer and resistance experiment[J].Computers and Applied Chemistry,2008,(7):867-871(in Chinese)[李锋祥,阎华,丁玉梅,等.管程扰流传热与阻力试验中的特征长度[J].计算机与应用化学,2008,(7):867-871].doi:10.3969/j.issn.1001-4160.2008.07.023.
    [28]Chan Wen,Song Pengyun,Mao Wenyun,et al.Numerical analysis of temperature field of spiral groove dry gas seal face[J].Journal of Drainage and Irrigation Machinery Engineering,2015,33(5):422-428(in Chinese)[产文,宋鹏云,毛文元,等.螺旋槽干气密封端面气膜温度场的数值分析[J].排灌机械工程学报,2015,33(5):422-428].
    [29]Basu P.Analysis of a radial groove gas face seal[J].Tribology Transactions,1992,35(1):11-20.doi:10.1080/10402009208982083.
    [30]Nicolescu B N,Petrescu T C.Homogenization of the reynolds equation in the radial face seals case[J].Asymptotic Analysis,2013,81(1):35-52.doi:10.3233/ASY-2012-1120.
    [31]Tang Xuelin,Yu Xin,Ren Songchang,et al.Solid-liquid two-phase fluid dynamics and its application in hydraulic machinery[M].Zhengzhou:Yellow River Water Conservancy Press,2006:68-76(in Chinese)[唐学林,余欣,任松长,等.固-液两相流体动力学及其在水力机械中的应用[M].郑州:黄河水利出版社,2006:68-76].
    [32]Ruan B.Finite element analysis of the spiral groove gas face seal at the slow speed and the low pressure conditions-slip flow consideration[J].Tribology Transactions,2000,43(3):411-418.doi:10.1080/10402000008982357.
    [33]Hu Xiaopeng,Song Pengyun.Theoretic analysis of the effect of real gas on the performance of the T-groove and radial groove dry gas seal[J].Applied Mechanics and Materials,2013,271:1218-1223.doi:10.4028/www.scientific.net/AMM.271-272.1218.
    [34]Jin Xiaohong,Li Yuanhui.Fluid mechanics[M].Beijing:China Electric Power Press,2011:77-97(in Chinese)[金晓宏,李远慧.Fluid Mechanics流体力学[M].北京:中国电力出版社,2011:77-97].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700