用户名: 密码: 验证码:
气膜冷却涡轮导叶热障涂层热应力的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Modeling of Thermal Stress of Thermal Barrier Coatings on a Turbine Vane with Film Cooling Structure
  • 作者:刘建华 ; 刘永葆 ; 刘莉 ; 贺星
  • 英文作者:LIU Jian-hua;LIU Yong-bao;LIU Li;HE Xing;College of Power Engineering, Naval University of Engineering;College of Physics Science and Engineering Technology, Yichun University;
  • 关键词:热障涂层 ; 热应力 ; 气膜冷却 ; 涡轮导叶 ; 数值模拟
  • 英文关键词:thermal barrier coatings;;thermal stress;;film cooling;;turbine vane;;numerical modeling
  • 中文刊名:BMGC
  • 英文刊名:China Surface Engineering
  • 机构:海军工程大学动力工程学院;宜春学院物理科学与工程技术学院;
  • 出版日期:2018-05-09 09:10
  • 出版单位:中国表面工程
  • 年:2018
  • 期:v.31;No.150
  • 基金:国家自然科学基金(11305266)~~
  • 语种:中文;
  • 页:BMGC201803023
  • 页数:11
  • CN:03
  • ISSN:11-3905/TG
  • 分类号:132-142
摘要
基于CFD模拟获得的气膜冷却涡轮导叶不均匀温度场,考虑TGO热生长增厚和合金材料的塑性和蠕变行为,对涂层热应力进行了模拟。结果表明,高温区域出现在叶盆和叶背中后部,以及叶栅入口处端壁边缘,涂层使得叶身处合金材料最高温度下降了30℃。在高温工作初期,涂层热应力集中范围更广,易发生早期开裂,而随着高温时间累积,合金材料的蠕变和塑性行为减小了涂层及合金的应力集中范围,并在200~400 h内趋于稳定。TC在叶身处的应力集中区出现在邻近尾缘区域、叶背最大曲率处,以及进气边靠近上下端壁的气膜孔区域;在端壁处的应力集中区初期主要出现在叶栅入口处的进气侧边缘和上端壁气膜孔区域,高温工作时间累积后仅集中在上端壁气膜孔区域。TGO热生长区域应力集中明显,400 h后厚度达到4.79μm,易诱发涂层剥落。
        Based on the non-homogenous temperature field of a film cooling turbine vane, the thermal stress of coatings was modeled considering the thermally growing of oxidation and plastic and creep behavior of the alloy. The results show that the high temperature zones are in the posterior of the suction side and pressure side, as well as the edge of the endwalls near the cascade inlet. The coatings provide a 30 ℃ decline of the maximum temperature of the alloy in the body of the vane. At the beginning, thermal stresses concentrate in larger area in the coatings and maybe more prone to induce early crack. However,the plasticity and creep behavior of the alloy release the thermal stresses of the coatings and alloy with the working time accumulation. The thermal stresses reach stable in 200-400 h. In the body of the vane, the thermal stresses of TC concentrate in the zones nearby the tailing edge, the zones with max curvature at the suction side, and the zones at the leading edge but adjacent to the endwalls. In the endwalls, the stress first concentrates in the zones near the cascade inlet and the zones near the film cooling holes at the upper endwall. However, the stress only concentrates in the zones near the film cooling holes at the upper endwall with the working time accumulation. In the thermally growing zones, TGO thickness reaches 4.79 μm after 400 h,which results in intensive thermal stresses and maybe trigger spallation.
引文
[1]郭洪波,宫声凯,徐惠彬.新型高温/超高温热障涂层及制备技术研究进展[J].航空学报,2014,35(10):2722-2732.GUO H B,GONG S K,XU H B.Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies[J].Acta Aeronauticaet Astronautica Sinica,2014,35(10):2722-2732(in Chinese).
    [2]杨晓光,耿瑞,周燕佩.热障涂层氧化和热疲劳寿命实验研究[J].航空动力学报,2003,18(2):195-200.YANG X G,GENG R,ZHOU Y P.An experimental study of oxidation and thermal fatigue of TBC[J].Journal of Aerospace Power,2003,18(2):195-200(in Chinese).
    [3]PADTURE N P,GELL M,JORDAN E H.Thermal barrier coatings for gas-turbine engine applications[J].Science,2002,296(5566):280-284.
    [4]周益春,刘奇星,杨丽,等.热障涂层的破坏机理与寿命预测[J].固体力学学报,2010,31(5):504-531.ZHOU Y C,LIU Q X,YANG L,et al.Failure mechanisms and life prediction of thermal barrier coatings[J].Chinese Journal of Solid Mechanics,2010,31(5):504-531(inChinese).
    [5]王利平,张靖周,姚玉.敷设热障涂层气冷叶片温度分布数值研究[J].航空动力学报,2012,27(2):357-364.WANG L P,ZHANG J Z,YANG Y.Numerical investigation on temperature distribution of an air-cooled and thermal barrier coating blade[J].Journal of Aerospace Power,2012,27(2):357-364(in Chinese).
    [6]王利平,张靖周,姚玉.热障涂层对涡轮叶片冷却效果影响的数值研究[J].化工学报,2012,63(S1):130-137.WANG L P,ZHANG J Z,YANG Y.Numerical investigation on influence of thermal barrier coatings on turbine blade[J].CIESC Journal,2012,63(S1):130-137(in Chinese).
    [7]BIA?AS M.Finite element analysis of stress distribution in thermal barrier coatings[J].Surface&Coatings Technology,2008,202(24):6002-6010.
    [8]RANJBAR-FAR M,ABSI J,MARIAUX G,et al.Simulation of the effect of material properties and interface roughness on the stress distribution in thermal barrier coatings using finite element method[J].Materials&Design,2010,31(2):772-781.
    [9]RANJBAR-FAR M,ABSI J,MARIAUX G,et al.Effect of residual stresses and prediction of possible failure mechanisms on thermal barrier coating system by finite element method[J].Journal of Thermal Spray Technology,2010,19(5):1054-1061.
    [10]杨晓光,耿瑞.带热障涂层导向器叶片二维温度场及热应力分析[J].航空动力学报,2002,17(4):432-436.YANG X G,GENG R.The analysis of 2D temperature and thermal stress of TBC-coated turbine vane[J].Journal of Aerospace Power,2002,17(4):432-436(in Chinese).
    [11]TANG W Z,YANG L,ZHU W,et al.Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure TBCs by a fluid-solid coupling method[J].Journal of Materials Science&Technology,2016,32(5):452-458.
    [12]YANG L,LIU Q X,ZHOU Y C,et al.Finite element simulation on thermal fatigue of a turbine blade with thermal barrier coatings[J].Journal of Materials Science&Technology,2014,30(4):371-380.
    [13]ZHU W,CAI M,YANG L,et al.The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J].Surface&Coatings Technology,2015,276:160-167.
    [14]DONG P,WANG Q,GUO Z,et al.Conjugate calculation of gas turbine vanes cooled with leading edge films[J].Chinese Journal of Aeronautics,2009,22(2):145-152.
    [15]LIU J H,LIU Y B,HE X,et al.Study on TBCs insulation characteristics of a turbine blade under serving conditions[J].Case Studies in Thermal Engineering,2016,8:250-259.
    [16]SIEGEL R,SPUCKLER M.Analysis of thermal radiation effects on temperatures in turbine engine thermal barrier coatings[J].Materials Science and Engineering A,1998,245:150-159.
    [17]曹雪强.热障涂层材料[M].北京:科学出版社,2007.CAO X Q.Materials of thermal barrier coatings[M].Beijing:Science Press,2007(in Chinese).
    [18]曹雪强.热障涂层新材料和新结构[M].北京:科学出版社,2016.CAO X Q.New materials and new structures of thermal barrier coatings[M].Beijing:Science Press,2016(in Chinese).
    [19]BEDNARZ P.Finite element simulation of stress evolution in thermal barrier coating systems[D].Aachen,German:Research Centre Juelich,Technical University of Aachen,2006.
    [20]刘建华,刘永葆,刘莉,等.氧化层增厚对涡轮导叶热障涂层残余应力的影响[J].海军工程大学学报,2017,29(3):98-104.LIU J H,LIU Y B,LIU L,et al.Effects of thermal grown oxide layer thickening on residual stress of thermal barrier coatings on a turbine vane[J].Journal of Naval University of Engineering,2017,29(3):98-104(in Chinese).
    [21]R?SLER J,B?KER,M,AUFZUG K.A parametric study of the stress state of thermal barrier coatings:Part I:Creep relaxation[J].Acta Materialia,2004,52(16):4809-4817.
    [22]CHOI S R,ZHU D M,MILLER R A,et al.Effect of sintering on mechanical and physical properties of plasma-sprayed thermal barrier coatings[J].Journal of the American Ceramic Society,2004,88(10):2859-2867.
    [23]FREBORG A M,FERGUSON B L,BRINDLEY W J,et al.Modeling oxidation induced stresses in thermal barrier coatings[J].Materials Science&Engineering A-structural Materials Properties Microst,1998,245(2):182-190.
    [24]KYAW S,JONES A,HYDE T.Predicting failure within TBC system:Finite element simulation of stress within TBCsystem as affected by sintering of APS TBC,geometry of substrate and creep of TGO[J].Engineering Failure Analysis,2013,27:150-164.
    [25]AKTAA J,SFAR K,MUNZ D.Assessment of TBC systems failure mechanisms using a fracture mechanics approach[J].Acta Materialia,2005,53(16):4399-4413.
    [26]BOHN D,REN J,KUSTERER K.Conjugate heat transfer analysis for film cooling configurations with different hole geometries[C].Proceedings of the ASME Turbo Expo 2003,Collocated with the 2003 International Joint Power Generation Conference,2003.
    [27]BOHN D,KREWINKEL R.Influence of a broken-away TBC on the flow structure and wall temperature of an effusion cooled multi-layer plate using the conjugate calculation method[C].Proceedings of the ASME Turbo Expo 2008:Power for Land,Sea,and Air,2008.
    [28]YANG L,LIU Q X,ZHOU Y C,et al.Finite element simulation on thermal fatigue of a turbine blade with thermal barrier coatings[J].Journal of Materials Science&Technology,2014,30(4):371-380.
    [29]GUO H,WANG Y,WANG L,et al.Thermo-physical properties and thermal shock resistance of segmented La2Ce2O7/YSZ thermal barrier coatings[J].Journal of Thermal Spray Technology,2009,18(4):665-671.
    [30]WANG Y,LI M X,SUO H L.Mechanical properties of YSZthermal barrier coatings with segmented structure[J].Surface Engineering,2013,28(5):329-332.
    [31]毛卫国.热-力联合作用下热障涂层界面破坏分析[D].湘潭:湘潭大学,2006.MAO W G.Analysis of interface failure of thermal barrier ceramic coating under thermo-mechanical loadings[D].Xiangtan:Xiangtan University,2006(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700