用户名: 密码: 验证码:
复杂屋盖结构表面风压的非高斯特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Non-Gaussian characteristics of the wind pressure on a roof with irregular shape
  • 作者:夏俞超 ; 陈水福
  • 英文作者:XIA Yuchao;CHEN Shuifu;College of Civil Engineering and Architecture, Zhejiang University;
  • 关键词:复杂屋盖 ; 风压系数 ; 概率分布 ; 混合模型 ; 非高斯特性
  • 英文关键词:roof with irregular shape;;wind pressure coefficient;;probability distribution;;mixture model;;non-Gaussian characteristic
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:浙江大学建筑工程学院;
  • 出版日期:2019-01-28
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.334
  • 基金:国家自然科学基金(50978230)
  • 语种:中文;
  • 页:ZDCJ201902019
  • 页数:8
  • CN:02
  • ISSN:31-1316/TU
  • 分类号:128-135
摘要
对一具有复杂曲面形状的开敞式大跨屋盖结构进行了风洞模型测压试验,对获得的屋面平均风压系数、脉动风压系数及其偏度和峰度值进行了计算和分析;提出并运用三种概率分布混合模型:对数正态分布和Weibull分布组合(LW)、双对数正态分布组合(LL)、双Weibull分布组合(WW)模型,对屋盖的非高斯风压分布特性进行了拟合和计算。结果显示,这类复杂屋盖除了在迎风屋檐、角区等出现吸力极大值外,还会在跨中凸起区域产生依次排列的多个极值区,这主要与复杂曲面所引起的气流多次分离与再附着有关;屋盖不同部位的风压呈现不同程度的非高斯特性,其中气流分离区的风压非高斯特性比较显著;三种概率分布混合模型对屋盖风压系数概率分布的拟合效果有所差别,其中LW混合模型的拟合效果最佳,适用于不同偏度的风压分布情况。
        The rigid model wind tunnel experiments on an open-type roof with irregular shape were conducted. The mean wind-pressure coefficients, fluctuating wind-pressure coefficients, skewness and kurtosis were analyzed. The lognormal-Weibull mixture distribution model, lognormal-lognormal mixture distribution model and Weibull-Weibull mixture distribution model were adopted to fit the probability distribution of pressure coefficient time series of the taps. The data analysis shows that the maximum negative pressures appear on the eaves, and corners of the roof on the windward. What's more, several extreme value areas are arranged in a line on the bulge part of the roof due to its irregular shape. The wind pressure in different parts of the roof presents different degrees of non-Gaussian properties and it shows strong non-Gaussian property when the taps are in flow separation regions. The three mixture models show some difference in the fitting results. The lognormal-Weibull mixture distribution model is appropriate for fitting the probability distribution of pressure coefficients with various skewness.
引文
[1] 中华人民共和国国家标准.建筑结构荷载规范:GB 50009—2012[S].北京:中国建筑工业出版社,2006.
    [2] STATHOPOULOS T.Wind pressure functions for flat roofs[J].Journal of the Engineering Mechanics Division,1981,107(5):889-905.
    [3] 王海振.鞍型屋盖围护结构风荷载特性及设计风荷载[D].北京:北京交通大学,2015.
    [4] DAVENPORT A G.Gust loading factors[J].Journal of the Structural Division,1967,93(3):11-34.
    [5] STATHOPOULOS T.PDF of wind pressures on low-rise buildings[J].Journal of the Structural Division,1980,106(5):973-990.
    [6] HOLMES J D.Non-Gaussian characteristics of wind pressure fluctuations[J].Journal of Wind Engineering and Industrial Aerodynamics,1981,7(1):103-108.
    [7] KAWAI H.Pressure fluctuations on square prisms-applicability of strip and quasi-steady theories[J].Journal of Wind Engineering and Industrial Aerodynamics,1983,13(1/2/3):197-208.
    [8] LETCHFORD C W,IVERSON R E,MCDONALD J R.The application of the quasi-steady theory to full scale measurements on the Texas tech building[J].Journal of Wind Engineering and Industrial Aerodynamics,1993,48(1):111-132.
    [9] 王旭,黄鹏,顾明.海边坡角可调试验房风荷载现场实测研究[J].振动与冲击,2012,31(5):176-182.WANG Xu,HUANG Peng,GU Ming.Field investigation on wind loads of a building with adjustable roof pitch near sea[J].Journal of Vibration and Shock,2012,31(5):176-182.
    [10] SADEK F,SIMIU E.Peak non-Gaussian wind effects for database-assisted low-rise building design[J].Journal of Engineering Mechanics,2002,128(5):530-539.
    [11] TIELEMAN H W,GE Z,HAJJ M R.Theoretically estimated peak wind loads[J].Journal of Wind Engineering and Industrial Aerodynamics,2007,95(2):113-132.
    [12] 陈斌.典型低矮建筑屋面风压的概率统计分析及极值研究[D].上海:同济大学,2008.
    [13] COOK N J.Short communication:on the Gaussian-exponential mixture model for pressure coefficients[J].Journal of Wind Engineering & Industrial Aerodynamics,2016,153:71-77.
    [14] 程红伟,陶俊勇,蒋瑜,等.基于高斯混合模型的非高斯随机振动幅值概率密度函数[J].振动与冲击,2014,33(5):115-119.CHENG Hongwei,TAO Junyong,JIANG Yu,et al.Amplitude probability density functions for non-Gaussian random vibrations based on a Gaussian mixture model[J].Journal of Vibration and Shock,2014,33(5):115-119.
    [15] HUANG M.Peak distributions and peak factors of wind-induced pressure processes on tall buildings[M]//High-Rise Buildings under Multi-Hazard Environment.Berlin:Springer Singapore,2017.
    [16] 陶玲,黄鹏,顾明,等.低矮房屋风压时程的概率分布[J].同济大学学报(自然科学版),2013,41(1):27-32.TAO Ling,HUANG Peng,GU Ming,et al.Probability density distribution of wind pressure time series of low-rise buildings[J].Journal of Tongji University(Natural Science),2013,41(1):27-32.
    [17] 黄本才.结构抗风分析原理及应用[M].上海:同济大学出版社,2001.
    [18] 孙瑛,武岳,林志兴,等.大跨屋盖结构风压脉动的非高斯特性[J].土木工程学报,2007,40(4):1-5.SUN Ying,WU Yue,LIN Zhixing,et al.Non-Gaussian features of fluctuating wind pressures on long span roofs[J].China Civil Engineering Journal,2007,40(4):1-5.
    [19] 刘新,田玉基.围护结构非高斯风压时程的峰值因子[J].北京交通大学学报,2013,37(4):128-133.LIU Xin,TIAN Yuji.Peak factor of non-Gaussian time history of wind pressure for enclosure structure[J].Journal of Beijing Jiaotong University,2013,37(4):128-133.
    [20] LI M,LI X.MEP-type distribution function:a better alternative to Weibull function for wind speed distributions[J].Renewable Energy,2005,30(8):1221-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700