用户名: 密码: 验证码:
新型多孔聚甲基丙烯酸甲酯骨水泥的制备及性能分析
详细信息    查看全文 | 推荐本文 |
摘要
背景:多孔磷酸三钙/聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)骨水泥可改善传统PMMA骨水泥骨传导性差的不足,但加入的大量致孔剂显著降低了复合骨水泥的力学性能。目的:为改善多孔磷酸三钙/PMMA骨水泥的力学性能,制备含不同比例纳米磷酸三钙、甲基丙烯酸羟乙酯的复合PMMA骨水泥,观察其力学性能、凝固性能、成孔性能及生物安全性。方法:向PMMA骨水泥固相中加入不同比例的纳米磷酸三钙(质量分数40%,50%,60%),液相中加入不同比例的甲基丙烯酸羟乙酯(质量分数0%,5%,10%,15%,20%),混合固相与液相,制备不同组分的复合骨水泥,检测各组分骨水泥的抗压强度、抗弯强度、凝固最高温度及凝固时间,筛选优选比例组分骨水泥。将优选组分骨水泥浸泡在模拟人细胞外液中12周,扫描电镜观察成孔性能。采用优选组分骨水泥浸提液培养成骨前体细胞,24 h后利用CCK-8法检测吸光度,计算细胞活力。结果与结论:(1)在固相中加入40%,50%的磷酸三钙,可增强复合骨水泥的抗压强度,但当其比例达到60%时,复合骨水泥的抗压强度明显下降;磷酸三钙可明显降低复合骨水泥的抗弯性能,呈线性关系;在液相中加入甲基丙烯酸羟乙酯,可加强复合骨水泥的抗压、抗弯强度,但当浓度超过15%时,复合骨水泥的力学性能不再增强;(2)复合骨水泥的凝固最高温度约为80℃,与磷酸三钙、甲基丙烯酸羟乙酯比例无关;复合骨水泥的凝固时间随磷酸三钙比例的增加而缩短,随甲基丙烯酸羟乙酯比例的增加而延长;(3)优选组分骨水泥比例,纳米磷酸三钙为50%,甲基丙烯酸羟乙酯为0%,5%,10%,此3种复合骨水泥在模拟人细胞外液中浸泡12周后,表面可形成孔径约为100μm的多孔结构;(4)在3种优选复合骨水泥浸提液中,成骨前体细胞活力均大于75%,无细胞毒性;(5)综合以上结果发现,在加入PMMA固相中加入50%磷酸三钙、液相中加入10%甲基丙烯酸羟乙酯为最优复合骨水泥配方。
        BACKGROUND: Porous tricalcium phosphate/polymethyl methacrylate bone cement can overcome the poor osteoconduction of traditional polymethyl methacrylate bone cement. But the addition of porogens may cause a significant reduction in the mechanical properties of composite bone cements.OBJECTIVE: To improve the mechanical properties of porous tricalcium phosphate/polymethyl methacrylate at different proportions, and to observe the mechanical properties, agglomeration, porosity and biosafety of composite bone cements. METHODS: Different groups of composite bone cements were prepared by adding different contents of tricalcium phosphate(40%, 50%, 60%) in solid phase and hydroxyethyl methylacrylate(0%, 5%, 10%, 15%, 20%) in liquid phase. The compressive strength, bending strength, maximum setting temperature, and setting time were measured, and screened the optimal ratio preliminarily. Then the pore formation properties of the optimal specimens were observed by scanning electron microscopy at 12 weeks after soaking in simulated body fluid. The osteogenic precursor cells were co-cultured with the preferred composite bone cement extract for 24 hours. The absorbance was then measured by cell counting kit-8 assay, and the cell viability was calculated. RESULTS AND CONCLUSION: The compressive strength of composite bone cement was increased when adding 40% and 50% of tricalcium phosphate in solid phase, but decreased when tricalcium phosphate concentration reached 60%. The bending strength was significantly decreased after adding tricalcium phosphate, showing a linear relationship. Addition of hydroxyethyl methylacrylate in liquid phase could strengthen the compressive strength and bending strength of composite bone cements, but no longer enhanced the mechanical properties when the concentration exceeded 15%. The maximum setting temperature of the composite bone cement was about 80 oC, regardless of the contents of tricalcium phosphate and hydroxyethyl methylacrylate. The setting time prolonged with the increasing of tricalcium phosphate and shortened with the increasing of hydroxyethyl methylacrylate. The formulas containing 50% tricalcium phosphate in the solid phase and 0%, 5% and 10% hydroxyethyl methylacrylate, respectively in liquid phase were chosen as preferable groups. After immersing in the simulated body fluid for 12 weeks, there was porous structure whose pore size was approximately 100 μm formed on the surface of composite bone cement. The cell viabilities of the preferable composite bone cement extract were all more than 75%, showing there was no cytotoxicity. In conclusion, the addition of 50% tricalcium phosphate in solid phase and 10% hydroxyethyl methylacrylate A in liquid phase into polymethyl methacrylate from the optimal composite bone cement formulation.
引文
[1]CHARNLEY J.Anchorage of the femoral head prosthesis to the shaft of the femur.J Bone Joint Surg Br.1960;42-B:28-30.
    [2]Mahon OR,O'Hanlon S,Cunningham CC,et al.Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase-and mitogen-activated protein kinase-dependent manner.Acta Biomater.2018;65:426-435.
    [3]Gao X,Ge J,Li W,et al.LncRNA KCNQ1OT1 ameliorates particle-induced osteolysis through inducing macrophage polarization by inhibiting miR-21a-5p.Biol Chem.2018;399(4):375-386.
    [4]Antonios JK,Yao Z,Li C,et al.Macrophage polarization in response to wear particles in vitro.Cell Mol Immunol.2013;10(6):471-482.
    [5]Kim W,Yoon PW,Kwak HS,et al.Primary hybrid THA using a polymethyl methacrylate-precoated stem:A single-center experience with a 10-year minimum follow-up.J Biomed Mater Res B Appl Biomater.2017;105(5):1300-1306.
    [6]Ayre WN,Denyer SP,Evans SL.Ageing and moisture uptake in polymethyl methacrylate(PMMA)bone cements.J Mech Behav Biomed Mater.2014;32:76-88.
    [7]Dall'Oca C,Maluta T,Cavani F,et al.The biocompatibility of porous vs non-porous bone cements:a new methodological approach.Eur J Histochem.2014;58(2):2255.
    [8]Yang J,Zhang K,Zhang S,et al.Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements.Med Sci Monit.2015;21:1162-1172.
    [9]Lye KW,Tideman H,Wolke JC,et al.Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue.Clin Oral Implants Res.2013;24 Suppl A 100:100-109.
    [10]Sa Y,Yu N,Wolke JGC,et al.Bone Response to Porous Poly(methyl methacrylate)Cement Loaded with Hydroxyapatite Particles in a Rabbit Mandibular Model.Tissue Eng Part CMethods.2017;23(5):262-273.
    [11]Sa Y,Yang F,de Wijn JR,et al.Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid.Mater Sci Eng C Mater Biol Appl.2016;61:190-198.
    [12]Wang L,Yoon DM,Spicer PP,et al.Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction.J Biomed Mater Res B Appl Biomater.2013;101(5)813-825.
    [13]Lewis G.Properties of acrylic bone cement:state of the art review.J Biomed Mater Res.1997;38(2):155-182.
    [14]张森林.磷酸钙骨水泥的研究进展[J].医学研究生学报,2003,16(1):62-63.
    [15]陈浩东,姚金凤,梁志刚.磷酸钙的固有骨诱导性及其应用[J].中国组织工程研究,2016,20(25):3785-3792.
    [16]Li Y,Jiang T,Zheng L,et al.Osteogenic differentiation of mesenchymal stem cells(MSCs)induced by three calcium phosphate ceramic(CaP)powders:A comparative study.Mater Sci Eng C Mater Biol Appl.2017;80:296-300.
    [17]尚希福,汤亭亭,戴尅戎.TCP-PMMA骨水泥-骨界面强度变化的研究[J].医用生物力学,2006,21(2):111-114.
    [18]Liu Z,Tang Y,Kang T,et al.Synergistic effect of HA and BMP-2mimicking peptide on the bioactivity of HA/PMMA bone cement.Colloids Surf B Biointerfaces.2015;131:39-46.
    [19]Lewis G.Properties of nanofiller-loaded poly(methyl methacrylate)bone cement composites for orthopedic applications:a review.JBiomed Mater Res B Appl Biomater.2017;105(5):1260-1284.
    [20]Wolf-Brandstetter C,Roessler S,Storch S,et al.Physicochemical and cell biological characterization of PMMA bone cements modified with additives to increase bioactivity.J Biomed Mater Res B Appl Biomater.2013;101(4):599-609
    [21]Klaus-DieterKuhn.PMMA骨水泥[M].张克,吕维加译.北京:北京大学医学出版社,2015.
    [22]行业标准YY0459-2003/ISO5833:2002丙烯酸类树脂骨水泥:国家食品药品监督管理局,2013.
    [23]ISO 10993-11:1994,Biological evaluation of medical devices-Part 11:Tests for systemic toxicity.2003.
    [24]Langer R,Vacanti JP.Tissue engineering.Science.1993;260(5110):920-926.
    [25]Fottner A,Nies B,Kitanovic D,et al.Performance of bioactive PMMA-based bone cement under load-bearing conditions:an in vivo evaluation and FE simulation.J Mater Sci Mater Med.2016;27(9):138.
    [26]Verburg H,van de Ridder LC,Verhoeven VW,et al.Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model.BMC Med Imaging 2014;14:29.
    [27]Van Susante JLC,Verdonschot N,Bom LPA,et al.Lessons learnt from early failure of a patient trial with a polymer-on-polymer resurfacing hip arthroplasty.Acta Orthop.2018;89(1):59-65.
    [28]Chen C,Li D,Wang Z,et al.Safety and Efficacy Studies of Vertebroplasty,Kyphoplasty,and Mesh-Container-Plasty for the Treatment of Vertebral Compression Fractures:Preliminary Report.PLoS One.2016;11(3):e0151492.
    [29]Wang H,Sribastav SS,Ye F,et al.Comparison of Percutaneous Vertebroplasty and Balloon Kyphoplasty for the Treatment of Single Level Vertebral Compression Fractures:A Meta-analysis of the Literature.Pain Physician.2015;18(3):209-222.
    [30]Chandra W,Prasad BC,Jagadeesh MA,et al.Segmental polymethylmethacrylate-augmented fenestrated pedicle screw fixation for lumbar spondylolisthesis in patients with osteoporosisA case series and review of literature.Neurol India.2017;65(1):89-95.
    [31]Kim JG,Jin YJ,Chung SK,et al.Unilateral augmented pedicle screw fixation for foraminal stenosis.J Korean Neurosurg Soc.2009;46(1):5-10.
    [32]Yimin Y,Zhiwei R,Wei M,et al.Current status of percutaneous vertebroplasty and percutaneous kyphoplasty--a review.Med Sci Monit.2013;19:826-836.
    [33]Wegener B,Zolyniak N,Gülecyüz MF,et al.Heat distribution of polymerisation temperature of bone cement on the spinal canal during vertebroplasty.Int Orthop.2012;36(5):1025-1030.
    [34]McMahon S,Hawdon G,BaréJ,et al.In vivo response of bone defects filled with PMMA in an ovine model.Hip Int.2011;21(5):616-622.
    [35]Xu HH,Burguera EF,Carey LE.Strong,macroporous,and in situ-setting calcium phosphate cement-layered structures.Biomaterials.2007;28(26):3786-3796.
    [36]Tsuruga E,Takita H,Itoh H,et al.Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis.JBiochem.1997;121(2):317-324.
    [37]Moreau MF,Chappard D,Lesourd M,et al.Free radicals and side products released during methylmethacrylate polymerization are cytotoxic for osteoblastic cells.J Biomed Mater Res.1998;40(1):124-131.
    [38]Bettencourt A,Calado A,Amaral J,et al.In vitro release studies of methylmethacrylate liberation from acrylic cement powder.Int JPharm.2000;197(1-2):161-168.
    [39]Hoess A,López A,Engqvist H,et al.Comparison of a quasi-dynamic and a static extraction method for the cytotoxic evaluation of acrylic bone cements.Mater Sci Eng C Mater Biol Appl.2016;62:274-282.
    [40]郭新辉,吕扬阳,范积平,等.磷酸钙与聚甲基丙烯酸甲酯制备复合型骨水泥的生物安全性研究[J].中国骨与关节损伤杂志,2016,31(5):506-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700