用户名: 密码: 验证码:
强磁场对导电流体热毛细流动和换热影响的实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of the strong magnetic field on free surface thermocapillary convection of an electrically conductive fluid
  • 作者:陈然 ; 王增辉 ; 倪明玖
  • 英文作者:CHEN Ran;WANG Zenghui;NI Mingjiu;School of Engineering Science, University of Chinese Academy of Sciences;
  • 关键词:毛细对流 ; 表面张力 ; 液态金属 ; 磁场
  • 英文关键词:thermocapillary convection;;surface tension;;liquid metal;;magnetic field
  • 中文刊名:ZKYB
  • 英文刊名:Journal of University of Chinese Academy of Sciences
  • 机构:中国科学院大学工程科学学院;
  • 出版日期:2019-01-15
  • 出版单位:中国科学院大学学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51476162,51876201)资助
  • 语种:中文;
  • 页:ZKYB201901005
  • 页数:6
  • CN:01
  • ISSN:10-1131/N
  • 分类号:28-33
摘要
核聚变装置限制器有效地屏蔽来自器壁的杂质,排出来自中心等离子体的粒子流和热流。液态金属可以较好地完成这一任务。液态金属具有导热性强、液相温度范围大和易于补充等特性,是未来聚变反应堆面向等离子体部件的主要备选材料之一。限制器的不同位置存在较大的温差,在表面张力驱动下液态金属自由表面形成热毛细对流。该热毛细对流受到聚变堆强磁场的影响。通过建立导电流体自由表面热毛细对流实验系统获得可视化的实验结果,研究温差变化和强磁场参数对导电流体自由表面热毛细对流的影响规律,深入分析该过程对液态金属在未来聚变堆面向等离子体部件的成功应用具有重要意义。
        The divertor of the nuclear fusion device effectively shields the impurities from the wall and discharges the particle flow and heat flow from the central plasma. The liquid metal performs this task well. Liquid metal has the characteristics of strong thermal conductivity, large liquid temperature range, and easy supplement. It is one of the principal materials for plasma facing components in future fusion reactor. There are large temperature differences at different locations of the divertor. Under the action of surface tension, the thermocapillary convection is formed on the free surface of liquid metal, and the thermocapillary convection is affected by the strong magnetic field of the fusion reactor. The visual experimental results have been obtained through the establishment of the conductive fluid free surface thermocapillary convection experiment system. We have studied the influences of temperature change and strong magnetic field parameters on the conductive fluid free surface thermocapillary convection. In-depth analysis of the process has important significance for successful application of liquid metal as plasma facing components in future fusion.
引文
[1] 张一鸣,曾丽萍,沈新,等. ITER计划与聚变能发展战略[J]. 核聚变与等离子体物理,2013,33(4): 359-365.
    [2] 邓伯权,严建成,黄锦华.自由表面液态锂偏滤器靶板物理过程研究[J]. 核科学与工程,2000, 20(4): 373-384.
    [3] Doi T, Koster J N. Thermocapilary convection in two immiscible liquid layers with free surface[J]. Physics of Fluids, 1993, 5(8): 1 914-1 927.
    [4] Priest E, Forbes T. Magnetic reconnenction: MHD theory and application[M]. New York: Cambridge University Press, 2000: 1-15.
    [5] 李炜,姜燕妮,严君毅,等. 磁场对双扩散液层热毛细对流的影响[J]. 力学学报,2012,44(3):481-485.
    [6] Hossain A, Gorla RSR, Saleem M. Effect of magnetic field on thermocapillary convection in a system of two immiscible liquid layers in a rectangular cavity[J]. International Journal of Numerical Methods for Heat & Fluid, 2013, 23(3):405-426.
    [7] Kamotani Y, Platt J. Effect of free surface shape on combined thermocapillary and natural convection[J]. Journal of Thermophysics and Heat Transfer, 1992, 6(4):721-726.
    [8] Gupta N R, Haj-Hariri H, Borhan A. Effect of free surface heat transfer on thermocapillary flow in double-layer fluid structures[J]. Heat Mass Transfer, 2014, 50(3):333-339.
    [9] Qin T, Tukovic Z, Grigoriev R O. Buoyancy-thermocapillary convection of volatile fluids underatmospheric conditions[J]. International Journal of Heat and Mass Transfer, 2014, 75(4):284-301.
    [10] Jue T C, Ramaswamy B. Natural convection with thermocapillary and gravity modulation effects in low-gravity environments[J]. Journal of Spacecraft & Rockets, 2015, 178(6):856-869.
    [11] Kuhlmann H C, Albensoeder S. Three-dimensional flow instabilities in a thermocapillary-driven cavity[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 77(3):036 303.
    [12] Yamamoto T, Takagi Y, Okano Y, et al. Numerical investigation of oscillatory the thermocapillary flows under zerogravity in a circular liquid film with concave free surfaces[J]. Physics of Fluids, 2016, 28(3):032 106.
    [13] Wang Z H, Meng X, Ni M J. Liquid metal buoyancy driven convection heat transfer in a rectangular enclosure in the presence of a transverse magnetic field[J]. International Journal of Heat and Mass Transfer, 2017, 113(10): 514-523.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700