用户名: 密码: 验证码:
藏南冈底斯南缘程巴岩体高Sr/Y花岗闪长岩和包体形成机制及Sr-Nd-Hf同位素制约
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation mechanism of the Chengba high Sr/Y granodiorite and enclaves in southern Gangdise region,southern Tibet
  • 作者:尚振 ; 曾令森 ; 高利娥 ; 高家昊 ; 陈福坤 ; 侯可军 ; 王倩 ; 郭春丽
  • 英文作者:SHANG Zhen;ZENG Lingsen;GAO Li'e;GAO Jiahao;CHEN Fukun;HOU Kejun;WANG Qian;GUO Chunli;State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences;China University of Geosciences;School of Earth and Space Sciences, University of Science and Technology of China;
  • 关键词:冈底斯岩基 ; 程巴岩体 ; 花岗闪长岩 ; 高Sr/Y ; 闪长质包体 ; LA-ICP-MS锆石U-Pb年龄
  • 英文关键词:Gangdise batholith;;Chengba rock mass;;granodiorite;;high Sr/Y;;dioritic enclaves;;LA-ICP-MS zircon U-Pb ages
  • 中文刊名:ZQYD
  • 英文刊名:Geological Bulletin of China
  • 机构:大陆构造与动力学国家重点实验室/中国地质科学院地质研究所;中国地质大学;中国科学技术大学地球与空间科学学院;中国地质科学院矿产资源研究所;
  • 出版日期:2016-01-15
  • 出版单位:地质通报
  • 年:2016
  • 期:v.35;No.248
  • 基金:国家自然科学基金项目(批准号:41425010、41273034);; 中国地质调查局项目(编号:12120115027101)
  • 语种:中文;
  • 页:ZQYD201601007
  • 页数:20
  • CN:01
  • ISSN:11-4648/P
  • 分类号:75-94
摘要
程巴岩体位于藏南冈底斯岩基东段南缘,由花岗闪长岩、细粒闪长质包体等组成。测得的锆石U-Pb年龄可以代表岩石的形成年龄,即花岗闪长岩形成年龄为29.40±0.18Ma与29.42±0.25Ma,细粒闪长质捕虏体形成年龄为30.02±0.15Ma。花岗闪长岩具有较高的Si O2(65.2%~66.2%)、K2O(3.2%~4.0%),较低的铁(TFe O=3.2%~4.0%)和Mg O(约2%),同时具有高Sr(774×10-6~813×10-6)、低Y(9.9×10-6~11.2×10-6)、高Sr/Y值(63.4~82.2)等特征;闪长质包体表现出较低的Si O2(53%~56.1%)和K2O(1.5%~3.2%),较高的铁(TFe O=6.1%~8.1%)、Mg O(4.0%~6.2%)和Na2O/K2O≥2,同时具有负Eu异常(Eu/Eu*=0.432~0.804)。2种岩性都富集LREE及LILE,亏损HREE及HFSE,具有较高且一致的εHf(t)值(+1.1~+6.2)和全岩εNd(t)值(-2.9~-5.9)。以上数据表明,花岗闪长岩与细粒闪长质包体由同一岩浆分离结晶形成,花岗闪长岩经历磷灰石和角闪石的分离结晶,其高Sr/Y值为岩浆分离结晶的结果,并不代表原始岩浆组分。
        The Chengba Complex on the southern margin of the Gangdise batholiths in southern Tibet comprises mainly granodiorite and subordinately dioritic enclaves and leucogabbro. Zircon U-Pb analytical results demonstrate that the granodiorites formed at29.40±0.18 Ma to 29.42±0.25 Ma, whereas the fine-grained dioritic enclaves formed at 30.02±0.15 Ma. Bulk-rock major and trace element and isotope(Sr-Nd-Hf) analyses indicate that the granodiorites are characterized by relatively high Si O2(65.2%~66.2%) andK2O(3.2%~4.0%) but low Fe O and Mg O, and high Sr(774×10-6~813×10-6), low Y(9.9×10-6~11.2×10-6), and hence high Sr/Y ratios(>60 and up to 82). In contrast, the dioritic enclaves are relatively low in Si O2(53%~56.1%) and K2O(1.5%~3.2%), but high in Mg O and Fe O with relatively high Na/K ratios(≥2). Both are enriched in LREE and LILE and depleted in HREE and HFSE and have similar relatively high zircon εHf(t) values(+1.1~+6.2)as well as negative whole-rock εNd(t) values(-2.9~-5.9). Combined with data available, the new results obtained by the authors suggest that the Chengba granodiorite and dioritic enclaves were formed within a time span of ca.1Ma. Similar isotopic characteristics imply that they were derived from similar sources. The high Sr/Y ratios in Chengba granodiorite, in contrast to low Sr/Y ratios in the mafic enclaves, possibly do not represent primary magma composition.Instead, the high Sr/Y and high Ba characteristics of the Chengba granodiorite might have resulted from fractional crystallization of parent magmas with low Sr/Y ratios and low Ba content like those mafic enclaves.
引文
[1]Scharer U,Xu R H,Allegre C J.U-Pb geochronology of Gangdese(Transhimalaya)plutonism in the Lhasa-Xigaxe region,Tibet[J].Earth Planet.Sci.Lett.,1984,69:311-320.
    [2]Le Fort P.Granites in the tectonic evolution of the Himalaya,Karakoram and southern Tibet[J].Phil.Trans.R.Soc.London 326(A),1988,281-299.
    [3]Mo X X,Hou Z Q,Niu Y L,et al.Mantle contributions to crust althickening in south Tibetin response to the India-Asia collision[J].Lithos,2007,96:225-242.
    [4]Chung S L,Liu D Y,Ji J Q,et al.Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J].Geology,2003,31(11):1021-1024.
    [5]Hou Z Q,Gao Y F,Qu X M,et al.Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J].Earth Planet.Sci.Lett.,2004,220(1/2):139-155.
    [6]Zhu D C,Zhao Z D,Niu Y L,et al.The Lhasa Subterrane:record of a microcontinent and its histories of drift and growth[J].Earth Planet.Sci.Lett.,2011,301:241-255.
    [7]Zhu D C,Zhao Z D,Niu Y L,et al.Cambrian bimodal volcanism in the Lhasa Terrane,southern Tibet:Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J].Chem.Geol.,2012,328:290-308.
    [8]Zhang Z M,Dong X,Liu F,et al.Tectonic evolution of the Amdo Terrane,Central Tibet:Petrochemistry and zircon U-Pb geochronology[J].The Journal of Geology,2012,120:431-451.
    [9]曾令森,刘静,Saleeby J.大型花岗岩岩基形成和演化的深部动力学过程:滴水构造、钾质火山作用与地表地质过程[J].地质通报,2006,25(11):1257-1273.
    [10]Ma L,Wang Q,Wyman D A,et al.Late Cretaceous crustal growth in the Gangdese area,southern Tibet:Petrological and Sr-Nd-HfO isotopic evidence from Zhengga diorite-gabbro[J].Chem.Geol.,2013,349:54-70.
    [11]Wen D R,Chung S L,Song B,et al.Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics,SE Tibet:Petrogenesis and tectonic implications[J].Lithos,2008,105:1-11.
    [12]Ji W Q,Wu F Y,Chung S L,et al.Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith,southern Tibet[J].Chem.Geol.,2009,262(3/4):229-245.
    [13]Chu M F,Chung S L,O’Reilly S Y,et al.India’s hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks[J].Earth Planet.Sci.Lett.,2011,307:479-486.
    [14]王莉,曾令森,高利娥,等.藏南侏罗纪残留洋弧的地球化学特征及其大地构造意义[J].岩石学报,2012,28(6):1741-1754.
    [15]王莉,曾令森,高利娥,等.藏南冈底斯岩基东南缘早白垩纪高Sr/Y含单斜辉石花岗闪长岩[J].岩石学报,2013,29(6):1977-1994.
    [16]Mo X X,Dong G C,Zhao Z D,et al.Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision:Zircon SHRIMP U-Pb dating[J].Acta Geologica Sinica,2005,79(1):66-76.
    [17]Dong G C,Mo X X,Zhao Z D,et al.Geochronologic constraints by SHRIMP II zircon U-Pb dating on magma underplating in the Gangdise belt following India-Eurasia collision[J].Acta Geologica Sinica,2005,79(6):787-794.
    [18]莫宣学,赵志丹,邓晋福,等.印度-亚洲大陆主碰撞过程的火山作用响应[J].地学前缘,2003,10:135-148.
    [19]Mo X X,Niu Y L,Dong G C,et al.Contribution of syncollisional felsic magmatism to continental crust 570 growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet[J].Chemical Geology,2008,250:49-67.
    [20]Hou Z Q,Zheng Y C,Yang Z M,et al.Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet[J].Miner Deposita,2012,48:173-192.
    [21]Qu X M,Hou Z Q,Li Y G.Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt,southern Tibetan plateau[J].Lithos,2004,74(3/4):131-148.
    [22]Gao Y F,Hou Z Q,Kamber B S,et al.Adakite-like porphyries from the southern Tibetan continental collision zones:Evidence for slab melt metasomatism[J].Contrib.Mineral.Petrol.,2007,153(1):105-120.
    [23]Guo Z F,Wilson M,Liu J Q.Post-collisional adakites in south Tibet:Products of partial melting of subduction-modified lower crust[J].Lithos,2007,96(1/2):205-224.
    [24]Xu W C,Zhang H F,Guo L,et al.Miocene high Sr/Y magmatism,south Tibet:Product of partial melting of subducted Indian continental crust and its tectonic implication[J].Lithos,2010,114(3/4):293-306.
    [25]Ji W Q,Wu F Y,Chung S L,et al.Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution[J].The Journal of Geology,2012,120:531-541.
    [26]Guan Q,Zhu D C,Zhao Z D,et al.Crustal thickening prior to38Ma in southern Tibet:Evidence from lower crust-derived adakitic magmatism in the Gangdese Batholith[J].Gondwana Research,2012,21:1-12.
    [27]Turner S,Hawkesworth G,Liu J,et al.Timing of Tibet an uplift constrained by analysis of volcanic rocks[J].Nature,1993,364:50-54.
    [28]Williams H M,Turner S P,Pearce J A,et al.Nature of the source regions for post-collisional,potassic magmatism in southern and northern Tibet from geochemical variations and inverse trace element modelling[J].J.Petrol.,2004,45(3):555-607.
    [29]Miller C,Schuster R,Kl?tzli U,et al.Post-collisional potassic and ultrapotassic magmatism in SW Tibet:Geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J].J.Petrol.,1999,40(9):1399-1424.
    [30]Chung S L,Chu M F,Zhang Y Q,et al.Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism[J].Earth-Science Reviews,2005,68:173-196.
    [31]孙晨光,赵志丹,莫宣学,朱弟成等.青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因:锆石U-Pb年代学和Hf同位素制约.岩石学报,2008,2:249-264.
    [32]Zhao Z D,Mo X X,Dilek Y,et al.Geochemical and Sr-Nd-PbO isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet:Petrogenesis and implications for India intracontinental subduction beneath southern Tibet[J].Lithos,2009,113(1/2):190-212.
    [33]Defant M J,Drummond M S.Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Nature,1990,347:662-665.
    [34]Castillo P R,Janney P E,Solidum R U.Petrology and geochemistry of Camiguin Island,southern Philippines:Insights to the source of adakites and other lavas in a complex arc setting[J].Contrib.Mineral.Petrol.,1999,134(1):33-51.
    [35]Castillo P R.An overview of adakite petrogenesis[J].Chinese Sci.Bull.,2006,51(3):258-268.
    [36]Xu J F,Shinjo R,Defant M J,et al.Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:Partial melting of delaminated lower continental crust?[J].Geology,2002,30(12):1111-1114.
    [37]Wang Q,Mc Dermott F,Xu J F,et al.Cenozoic K-rich adakitic volcanic rocks in the Hohxil area,northern Tibet:Lower-crustal melting in an intracontinental setting[J].Geology,2005,33(6):465-468.
    [38]Xu W L,Gao S,Wang Q H,et al.Mesozoic crustal thickening of the eastern North China craton:Evidence from eclogite xenoliths and petrologic implications[J].Geology,2006,34(9):721-724.
    [39]Zeng L S,Gao L E,Xie K J,et al.Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes:Melting thickened lower continental crust[J].Earth Planet.Sci.Lett.,2011,303(3/4):251-266.
    [40]Zeng L S,Gao L E,Tang S H,et al.Eocene magmatism in the Tethyan Himalaya,southern Tibet[J].Geological Society,London,Special Publications.doi 2014,10.1144/SP412.8.
    [41]Martin H,Smithies R H,Rapp R P,et al.An overview of adakite,tonalite-trondhjemite-granodiorite(TTG)and sanukitoid:relationships and some implications for crustal evolution[J].Lithos,2005,79:1-24.
    [42]Streck M J,Leeman W P,Chesley J.High-magnesian andesite from Mount Shasta:A product of magma mixing and contamination,not a primitive mantle melt[J].Geology,2007,35(4):351-354.
    [43]Qin J F,Lai S C,Wang J,et al.High-Mg#adakitic tonalite from the Xichahe area,south Qinling Orogenic Belt(Central China):Petrogenesis and geological implications[J].Int.Geol.Rev.,2007,49(12):1145-1158.
    [44]Harrison T M,Yin A,Grove M,et al.The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet[J].J.Geophys.Res.,2000,105(B8):19211-19230.
    [45]Chung S L,Chu M F,Ji J Q,et al.The nature and timing of crustal thickening in southern Tibet:Geochemical and zircon Hf isotopic constraints from post collisional adakites[J].Tectonophysics,2009,477:36-49.
    [46]姜子琦,王强,Wyman D A,等.西藏冈底斯南缘冲木达约30Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?[J].地球化学,2011,02:126-146.
    [47]孙祥,郑有业,吴松,等.冈底斯明则-程巴斑岩-夕卡岩型Mo-Cu矿床成矿时代与含矿岩石成因[J].岩石学报,2013,29(4):1392-1406.
    [48]Li G M,Qin K Z,Ding K S,et al.Cenozoic skarn Cu-Au deposites in SE Gangdese:Features,ages,mineral assemblages and exploration signi-fance[C]//Mao J W,Bierlein F P.Mineral Deposit Research:Meeting the Global Challenge(2).Heidelberg:Springer-Verlag,2005:1239-1241.
    [49]Li G M,Qin K Z,Ding K S,et al.Geology,Ar-Ar age and mineral assemblage of Eocene skarn Cu-Au±Mo deposits in the Southeastern Gangdese arc,Southern Tibet:Implications for deep exploration[J].Res.Geol.,2006,56(3):315-336.
    [50]周利敏,侯增谦,郑远川,等.藏南程巴岩体副矿物研究:岩浆源区的指示[J].岩石学报,2011,27(9):2786-2794.
    [51]Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chem.Geol.,2008,257(1/2):34-43.
    [52]Sun S S,Mc Donough W F.Chemical and isotope systematic of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D,Norry M J.Magmatism in ocean Basins.Geological Society Publication,1989,42:313-345.
    [53]Gao Y F,Yang Z S,Santosh M,et al.Adakitic rocks from slab melt-modified mantle sources in the continental collision zone of southern Tibet[J].Lithos,2010,119:651-663.
    [54]Richards J P.Postsubduction porphyry Cu-Au and epithermal Au deposits:products of remelting of subduction-modified lithosphere[J].Geology,2009,37:247-250.
    [55]Bedard J H.Petrogenesis of boninites from the Betts Cove ophiolite,New Foundland,Canada:identification of subducted sourcecomponents[J].J.Petrol.,1999,40:1853-1889.
    [56]Seghedi I,Downes H,Peskay Z,et al.Magmagenesisin a subduction-related post-collisional volcanic arc segment:The Ukraiman Carpathians[J].Lithos,2001,57:237-262.
    [57]Xiong X L,Adam J,Green T H.Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis[J].Chem.Geol.,2005,218:339-359.
    [58]Xiong X L.Trace element evidence for the growth of early continental crust by melting of rutile-bearing hydrous eclogite[J].Geology,2006,34:945–948.
    [59]Xiong X.L,Keppler H,Aude-tat A,e t al.Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition,with applications for TTG genesis[J].Am.Mineral,2009,94:1175-1186.
    [60]Wu F Y,Ji W Q,Liu C Z,et al.Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin:Constraints on Transhi-malayan magmatic evolution in southern Tibet[J].Chem.Geol.,2010,271:13-25.
    [61]Wolf M B,Wyllie P J.Garnet growth during amphiboliteanatexis:Implications of a garnetiferous restite[J].The Journal of Geology,1993,101(3):357-373.
    [62]Rapp R P,Watson E B.Dehydration melting of metabasalt at 8-32kbar:implications for continental growth and crust-mantle recycling[J].J.Petrol.1995,36:891-931.
    [63]Harrison T M,Watson E B.The behavior of apatite during crustal anatexis:Equilibrium and kinetic considerations[J].Geochimica et Cosmochimica Acta,1984,48:1467-1477.
    [64]Romick J D,Kay S M,Kay R W.The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the Central Aleutians,Alaska[J].Contrib.Mineral.Petrol.,1992,112:101-118.
    [65]Davidson J,Turner S,Handley H,et al.Dosseto A.Amphibole“sponge”in arc crust?[J].Geology,2007,35:787-790
    [66]Davidson J,Wilson M.Differentiation and source processes at Mt Pelee and the Quill;active volcanoes in the Lesser Antilles Arc[J].J.Petrol.,2011,52:1493-1531.
    [67]Hidalgo P J,Rooney T O.Crystal fractionation processes at Baru volcano from the deep to shallow crust[J].Geochemistry Geophysics Geosystems,2010,11:Q12S30.
    [68]Klootwijk C T,Gee J S,Peirce J W,et al.An early India-Asia contact:paleomagnetic constraints from Ninetyeast Ridge,OD P Leg121[J].Geology,1992,20:395-398.
    [69]Klootwijk C T,Conaghan P J,Nazirullah R,et al.Further palaeomagmatic data from Chitral(Eastern Hindukush):evidence for an early India-Asia contact[J].Tectonophysics,1994,237:1-25.
    [70]Patriat P,Achache J.Indian-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates[J].Nature,1984,311:615-621.
    [71]Yin A,Harrison T M.Geologic evolution of the Himalaya-Tibetan orogen[J].Annu.Rev.Earth and Planetary Science Letters,2000,28:211-280.
    [72]Searle M P,Windley B F,Coward M P,et al.The closing of Tethys and the tectonics of the Himalaya[J].Geological Society of America Bulletin,1987,98(6):678-701.
    [73]Dewey J F,Cande S,PitmanⅢW C.Tectonic evolution of the India/Eurasia collision zone[J].Eclogae.Geol.Helv.,1989,82:717-734
    [74]Le Fort P.Evolution of the Himalaya s[C]//Yin A,Harrison T M.The Tectonic Evolution of Asia.Cambridge:Cambridge University Press,1996:95-109.
    [75]Hou Z Q,Cook N J.Metallogenesis of the Tibetan Collisional Orogen:Areview and introduction to the special issue[J].Ore Geology Reviews,2009,36:2-24.
    [76]Ji W Q,Wu F Y,Liu C Z,et al.Early Eocene crustal thickening in southern Tibet:New age and geochemical constraints from the Gangdese batholith[J].Journal of Asian Earth Sciences,2012,53:82-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700