古新世特提斯喜马拉雅南亚带石英砂岩成因及其构造意义:以藏南岗巴地区古新统基堵拉组为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genesis and Tectonic Significance of Quartz Sandstones in the Southern Subzone of Tethyan Himalayas: A Case Study on the Paleocene Jidula Formation in Gamba Area,Southern Tibet
  • 作者:刘庆山 ; 魏玉帅 ; 张宝森 ; 潘婉莹
  • 英文作者:LIU Qingshan;WEI Yushuai;ZHANG Baosen;PAN Wanying;School of Earth Sciences and Resources,China University of Geosciences;Research Center for Tibetan Plateau Geology,China University of Geosciences;
  • 关键词:古新世 ; 基堵拉组 ; 石英砂岩 ; 物源分析 ; 德干大火成岩省
  • 英文关键词:Paleocene;;Jidula Formation;;quartz sandstone;;provenance analysis;;Deccan large igneous province
  • 中文刊名:XDDZ
  • 英文刊名:Geoscience
  • 机构:中国地质大学(北京)地球科学与资源学院;中国地质大学(北京)青藏高原地质研究中心;
  • 出版日期:2019-06-15
  • 出版单位:现代地质
  • 年:2019
  • 期:v.33
  • 基金:国家自然科学基金项目(41572094)
  • 语种:中文;
  • 页:XDDZ201903009
  • 页数:13
  • CN:03
  • ISSN:11-2035/P
  • 分类号:95-107
摘要
特提斯喜马拉雅南亚带作为印度被动大陆北缘的主要构造单元,相较于其他类似构造单元发育着多套特殊的石英砂岩,意味着被动大陆边缘物源区陆源碎屑供应能力的多次变化,而引起印度被动大陆北缘石英砂岩沉积的构造背景和构造意义尚不明确。以特提斯喜马拉雅南亚带的岗巴地区古新统基堵拉组石英砂岩为例,通过砂岩碎屑成分分析、古流向恢复、重矿物分析和碎屑锆石年代学方法,对基堵拉组石英砂岩的沉积学及物源区特征,以及蕴含的成因和构造意义进行探讨。从沉积相分析结果来看,在早古新世岗巴地区所属的板块为印度被动大陆边缘,处于新特提斯洋的海岸线附近,以滨岸相为主,显示了一种浅海陆棚到陆相的变化。从砂岩岩相学的结果分析,基堵拉组的陆源碎屑物主要是成熟度极高的石英砂岩,同时古水流近NNE方向。从碎屑锆石年代学数据分析结果可知,基堵拉组的碎屑锆石年龄特征与早白垩世德干高原地区相吻合。故认为基堵拉组石英砂岩的形成是由于印度北缘的陆源碎屑供应量突然增多与被动大陆边缘物源区构造抬升导致,而引起被动大陆边缘物源区构造抬升的原因主要与德干大火成岩省形成相关。最终认为石英砂岩的发育成因与印度大陆北缘德干大火成岩省形成时构造隆升所导致的稳定克拉通再活化有关。
        The Tethyan Himalayas is the main tectonic unit of the northern Indian passive margin. Compared to other similar tectonic units,there are many suites of special quartz sandstones,implying that the terrigenous supply capacity had changed overtime. Tectonic setting and significance of these quartz sandstones are yet to be clear. In this paper,the quartz sandstones( Jidula Formation) in Gamba of the Tethyan Himalayas were analyzed for their detrital compositions,paleocurrent,heavy minerals and detrital zircon ages. Sedimentology and provenance characteristics of these quartz sandstones,their formation and tectonic significance were discussed.According to sedimentary facies analysis,in the Early Paleozoic Gamba area belonged to the Indian passive continental margin of the Neotethys. Littoral facies dominate and show a change from shallow shelf to continental facies. Sandstone lithofacies suggest that the terrigenous clastic material of the Jidula Formation comprises mainly quartz sandstone with very high maturity,and the paleocurrent direction was near NNE. Detrital zircon dating results suggest that the detrital zircon ages of the Jidula Formation coincide with those from the Early Cretaceous Degan Plateau. It is suggested that the formation of quartz sandstones( Jidula Formation) was led by the sudden increase of terrigenous clastic supply in the northern Indian plate margin and the tectonic uplift of the passive continental margin,which was in turn caused mainly by the formation of the Deccan large igneous province( LIP). We concluded that the origin of the quartz sandstones is related to the reactivation of stable cratons caused by the up-doming of the Deccan LIP on the northern Indian plate margin.
引文
[1]WILLEMS H,ZHOU Z,ZHANG B,et al. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet(Tingri area,China)[J]. Geologische Rundschau,1996,85(4):723-754.
    [2]YIN A. Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry,exhumation history,and foreland sedimentation[J]. Earth-Science Reviews,2006,76(1/2):1-131.
    [3]CAWOOD P A,JOHNSON M R W,NEMCHIN A A. Early Paleozoic orogenesis along the Indian margin of Gondwana:tectonic response to Gondwana assembly[J]. Earth and Planetary Science Letters,2007,255:70-84.
    [4]DING L,MAKSATBEK S,CAI F,et al. Processes of initial collision and suturing between India and Asia[J]. Science China Earth(Sciences),2017,60(4):635-651.
    [5]WILLEMS H,ZHANG B G. Cretaceous and Lower Tertiary sediments of Tethys Himalaya in the area of Gamba(South Tibet,PR China)[J]. Berichte aus Fachbereich Geowissenschaften der Universitat Bremen,1993,38:3-27.
    [6]JADOUL F,BERRA F,GARZANTI E. The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous(south Tibet)[J]. Journal of Asian Earth Sciences,1998,16(2/3):173-194.
    [7]GARZANTI E. Stratigraphy and sedimentary history of the Nepal Tethys Himalaya passive margin[J]. Journal of Asian Earth Sciences,1999,17(5/6):805-827.
    [8]HU X,GARZANTI E,WANG J,et al. The timing of India-Asia collision onset:facts,theories,controversies[J]. Earth-Science Reviews,2016,160:264-299.
    [9]LI J,HU X,GARZANTI E,et al. Paleogene carbonate microfacies and sandstone provenance(Gamba area,south tibet):Stratigraphic response to initial India-Asia continental collision[J].Journal of Asian Earth Sciences,2015,104:39-54.
    [10]HU X,SINCLAIR H D,WANG J,et al. Late Cretaceous-Paleogene stratigraphic and basin evolution in the Zhepure Mountain of southern Tibet:implications for the timing of India-Asia initial collision[J]. Basin Research,2012,24(5):520-543.
    [11]WAN X Q,JANSA L F,SARTI M. Cretaceous and Paleogene boundary strata in southern Tibet and their implication for the India-Eurasia[J]. Lethaia,2010,35(2):131-146.
    [12]YIN A. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences,2000,28(28):211-280.
    [13]WU F Y,JI W Q,WANG J G,et al. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science,2014,314(2):548-579.
    [14]丁林,蔡福龙,张清海,等.冈底斯—喜马拉雅碰撞造山带前陆盆地系统及构造演化[J].地质科学,2009,44(4):1289-1311.
    [15]LIU G,EINSELE G. Sedimentary history of the Tethyan basin in the Tibetan Himalayas[J]. Geologische Rundschau,1994,83(1):32-61.
    [16]DING L,KAPP P,ZHONG D L,et al. Cenozoic volcanism in Tibet:Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology,2003,44(10):1833-1865.
    [17]李国彪,万晓樵,丁林,等.藏南古近纪前陆盆地演化过程及其沉积响应[J].沉积学报,2004,22(3):455-464.
    [18]WAN X,LAMOLDA M A,SI J,et al. Foraminiferal stratigraphy of Late Cretaceous red beds in southern Tibet[J]. Cretaceous Research,2005,26(1):43-48.
    [19]SCIUNNACH D,GARZANTI E. Subsidence history of the Tethys Himalaya[J]. Earth-Science Reviews,2012,111(1/2):179-198.
    [20]HU X,GARZANTI E,MOORE T,et al. Direct stratigraphic dating of India-Asia collision onset at the Selandian(Middle Paleocene,59±1 Ma)[J]. Geology,2015,43(10):859-862.
    [21]GARZANTI Eduardo. From static to dynamic provenance analysis-sedimentary petrology upgraded[J]. Sedimentary Geology,2016,336:3-13.
    [22]SUTTNER L J,BASU A,INGERSOLL R V,et al. The effect of grain size on detrital modes:a test of the Gazzi-Dickinson pointcounting method[J]. Journal of Sedimentary Research,1985,55(4):616-617.
    [23]MANGE M A,MAURER H F W. Heavy Minerals in Colour[M]. London:Chapman&Hall,1992:147.
    [24]NICHOLS G. Sedimentology and Stratigraphy[M]. London:John Wiley&Sons,2009:1-50.
    [25]VAVRA G,GEBAUER D,SCHMID R,et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone(southern Alps):an ion microprobe(SHRIMP)study[J]. Contributions to Mineralogy and Petrology,1996,122(4):337-358.
    [26]VAVRA G,SCHMID R,GEBAUER D. Internal morphology,habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons:geochronology of the Ivrea Zone(Southern Alps)[J].Contributions to Mineralogy and Petrology,1999,134(4):380-404.
    [27]BELOUSOVA E,GRIFFIN W,O REILLY S Y,et al. Igneous zircon:trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,2002,143(5):602-622.
    [28]SAKAI H. Rifting of the Gondwana land and uplifting of the Himalayas recorded in Mesozoic and Tertiary fluvial sediments in the Nepal Himalayas[M]//TAIRA A,MASUDA F. Sedimentary Facies in the Active Plate Margin. Tokyo:Terra Scientific Publication Company,1989:723-732.
    [29]YE Z,BAOCHUN H. The influence of Cretaceous paleolatitude variation of the Tethyan Himalaya on the India-Asia collision pattern[J]. Science China(Earth Sciences),2017,60(6):47-56.
    [30]CLIFT P D,CARTER A,JONELL T N. U-Pb dating of detrital zircon grains in the Paleocene Stumpata Formation,Tethyan Himalaya,Zanskar,India[J]. Journal of Asian Earth Sciences,2013,82(3):80-89.
    [31]GARZANTI E,HU X. Latest Cretaceous Himalayan tectonics:obduction,collision or Deccan-related uplift?[J]. Gondwana Research,2015,28(1):165-178.
    [32]BICKFORD M E,SAHA D,SCHIEBER J,et al. New U-Pb ages of zircons in the Owk Shale(Kurnool Group)with reflections on proterozoic porcellanites in India[J]. Journal of the Geological Society of India,2013,82(3):207-216.
    [33]GARZANTI E. Himalayan ironstones,superplumes and the breakup of Gondwana[J]. Geology,1993,21:105-108.
    [34]HU X,JANSA L,CHEN L,et al. Provenance of Lower Cretaceous Wolong volcaniclastics in the Tibetan Tethyan Himalaya:Implications for the final breakup of eastern Gondwana[J].Sedimentary Geology,2010,223(3/4):193-205.
    [35]GARZANTI E,CASNEDI R,JADOUL F. Sedimentary evidence of a Cambro-Ordovician orogenic event in the northwestern Himalaya[J]. Sedimentary Geology,1986,48(3/4):237-265.
    [36]GEHRELS G E,DECELLES P G,MARTIN A,et al. Initiation of the Himalayan orogen as an Early Paleozoic thin-skinned thrust belt[J]. GSA Today,2015,13(9):75-85.
    [37]ALAM M,ALAM M M,CURRAY J R,et al. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history[J]. Sedimentary Geology,2003,155(3):179-208.
    [38]HALKETT A,WHITE N,CHANDRA K,et al. Dynamic uplift of the Indian Peninsula and the reunion plume[M]//AGU.AGU Fall Meeting Abstracts. Washington:AGU,2001:1-5.
    [39]LAKSHMINARAYANA G. Evolution in basin fill style during the Mesozoic Gondwana continental break-up in the Godavari Triple Junction,SE India[J]. Gondwana Research,2002,5(1):227-244.
    [40]MCQUARRIE N,ROBINSON D,LONG S,et al. Preliminary stratigraphic and structural architecture of Bhutan:Implications for the along strike architecture of the Himalayan system[J].Earth and Planetary Science Letters,2008,272(1/2):117.
    [41]GEHRELS G E,DECELLES P G,OJHA T P,et al. Geologic and U-Pb geochronologic evidence for Early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya[J].Journal of Asian Earth Sciences,2006,28(4/6):408.
    [42]GEHRELS G,KAPP P,DECELLES P,et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen[J]. Tectonics,2011,30:TC5016.
    [43]HUGHES N C,MYROW P M,MCKENZIE N R,et al. Age and implications of the phosphatic Birmania Formation,Rajasthan,India[J]. Precambrian Research, 2015, 267:164-173.
    [44]JOY S,JELSMA H,TAPPE S,et al. SHRIMP U-Pb zircon provenance of the Sullavai Group of Pranhita-Godavari Basin and Bairenkonda quartzite of Cuddapah Basin with implications for the southern Indian Proterozoic tectonic architecture[J]. Journal of Asian Earth Sciences,2015,111:827-839.
    [45]TURNER C C,MEERT J G,PANDIT M K,et al. A detrital zircon U-Pb and Hf isotopic transect across the Son Valley sector of the Vindhyan Basin,India:Implications for basin evolution and paleogeography[J]. Gondwana Research,2014,26(1):348-364.
    [46]PULLEN A,KAPP P,GEHRELS G E,et al. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area,southern Tibet[J]. Journal of Asian Earth Sciences,2008,33(5):323-336.
    [47]ZHU D,ZHAO Z,NIU Y,et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology,2011,39(8):727-730.
    [48]FONT E,CARLUT J,REMAZEILLES C,et al. End-Cretaceous akaganéite and its potential as a mineral marker of Deccan volcanism in the global sedimentary record[M]//EGU. EGU General Assembly Conference Abstracts. Vienna:EGU,2017:1-2.
    [49]ZHANG L,WANG C,WIGNALL P B,et al. Deccan volcanism caused coupledρCO2and terrestrial temperature rises,and pre-impact extinctions in northern China[J]. Geology,2018,46(3):272-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700